scispace - formally typeset
Search or ask a question
Institution

Research Institute of Molecular Pathology

FacilityVienna, Austria
About: Research Institute of Molecular Pathology is a facility organization based out in Vienna, Austria. It is known for research contribution in the topics: Cohesin & Chromatin. The organization has 1264 authors who have published 1904 publications receiving 279260 citations.


Papers
More filters
Journal ArticleDOI
10 Aug 2001-Science
TL;DR: It is proposed that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Abstract: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a “histone code” that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.

9,309 citations

Journal ArticleDOI
01 Mar 2001-Nature
TL;DR: It is shown that mammalian methyltransferases that selectively methylate histone H3 on lysine 9 (Suv39h HMTases) generate a binding site for HP1 proteins—a family of heterochromatic adaptor molecules implicated in both gene silencing and supra-nucleosomal chromatin structure.
Abstract: Distinct modifications of histone amino termini, such as acetylation, phosphorylation and methylation, have been proposed to underlie a chromatin-based regulatory mechanism that modulates the accessibility of genetic information. In addition to histone modifications that facilitate gene activity, it is of similar importance to restrict inappropriate gene expression if cellular and developmental programmes are to proceed unperturbed. Here we show that mammalian methyltransferases that selectively methylate histone H3 on lysine 9 (Suv39h HMTases) generate a binding site for HP1 proteins--a family of heterochromatic adaptor molecules implicated in both gene silencing and supra-nucleosomal chromatin structure. High-affinity in vitro recognition of a methylated histone H3 peptide by HP1 requires a functional chromo domain; thus, the HP1 chromo domain is a specific interaction motif for the methyl epitope on lysine9 of histone H3. In vivo, heterochromatin association of HP1 proteins is lost in Suv39h double-null primary mouse fibroblasts but is restored after the re-introduction of a catalytically active SWUV39H1 HMTase. Our data define a molecular mechanism through which the SUV39H-HP1 methylation system can contribute to the propagation of heterochromatic subdomains in native chromatin.

2,820 citations

Journal ArticleDOI
10 Aug 2000-Nature
TL;DR: A functional interdependence of site-specific H3 tail modifications is revealed and a dynamic mechanism for the regulation of higher-order chromatin is suggested.
Abstract: The organization of chromatin into higher-order structures influences chromosome function and epigenetic gene regulation. Higher-order chromatin has been proposed to be nucleated by the covalent modification of histone tails and the subsequent establishment of chromosomal subdomains by non-histone modifier factors. Here we show that human SUV39H1 and murine Suv39h1—mammalian homologues of Drosophila Su(var)3-9 and of Schizosaccharomyces pombe clr4—encode histone H3-specific methyltransferases that selectively methylate lysine 9 of the amino terminus of histone H3 in vitro. We mapped the catalytic motif to the evolutionarily conserved SET domain, which requires adjacent cysteine-rich regions to confer histone methyltransferase activity. Methylation of lysine 9 interferes with phosphorylation of serine 10, but is also influenced by pre-existing modifications in the amino terminus of H3. In vivo, deregulated SUV39H1 or disrupted Suv39h activity modulate H3 serine 10 phosphorylation in native chromatin and induce aberrant mitotic divisions. Our data reveal a functional interdependence of site-specific H3 tail modifications and suggest a dynamic mechanism for the regulation of higher-order chromatin.

2,796 citations

Journal ArticleDOI
12 Jul 2007-Nature
TL;DR: The generation and validation of a genome-wide library of Drosophila melanogaster RNAi transgenes, enabling the conditional inactivation of gene function in specific tissues of the intact organism and opening up the prospect of systematically analysing gene functions in any tissue and at any stage of the Drosophile lifespan.
Abstract: Forward genetic screens in model organisms have provided important insights into numerous aspects of development, physiology and pathology. With the availability of complete genome sequences and the introduction of RNA-mediated gene interference (RNAi), systematic reverse genetic screens are now also possible. Until now, such genome-wide RNAi screens have mostly been restricted to cultured cells and ubiquitous gene inactivation in Caenorhabditis elegans. This powerful approach has not yet been applied in a tissue-specific manner. Here we report the generation and validation of a genome-wide library of Drosophila melanogaster RNAi transgenes, enabling the conditional inactivation of gene function in specific tissues of the intact organism. Our RNAi transgenes consist of short gene fragments cloned as inverted repeats and expressed using the binary GAL4/UAS system. We generated 22,270 transgenic lines, covering 88% of the predicted protein-coding genes in the Drosophila genome. Molecular and phenotypic assays indicate that the majority of these transgenes are functional. Our transgenic RNAi library thus opens up the prospect of systematically analysing gene functions in any tissue and at any stage of the Drosophila lifespan.

2,721 citations

Journal ArticleDOI
TL;DR: RANKL selectively induces NFATc1 expression via TRAF6 and c-Fos signaling pathways, and may represent a master switch for regulating terminal differentiation of osteoclasts, functioning downstream of RANKL.

2,235 citations


Authors

Showing all 1268 results

NameH-indexPapersCitations
Matthias Mann221887230213
Napoleone Ferrara167494140647
Josef M. Penninger154700107295
Kim Nasmyth14229459231
Scott W. Lowe13439689376
Erwin F. Wagner12537559688
Paolo Sassone-Corsi12449353828
Adriano Aguzzi12066953631
Robert H. Singer11339141493
Kristian Helin11026442133
Adrian Bird10825475983
David T. Curiel10577144270
Eugene M. Johnson10224634441
Meinrad Busslinger9721529884
Ernst Wagner9653736723
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

97% related

Cold Spring Harbor Laboratory
6.6K papers, 1M citations

97% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

95% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
20228
2021111
202089
201991
201894