scispace - formally typeset
Search or ask a question
Institution

Research Triangle Park

NonprofitDurham, North Carolina, United States
About: Research Triangle Park is a nonprofit organization based out in Durham, North Carolina, United States. It is known for research contribution in the topics: Population & Environmental exposure. The organization has 24961 authors who have published 35800 publications receiving 1684504 citations. The organization is also known as: RTP.


Papers
More filters
Journal ArticleDOI
29 Sep 2017
TL;DR: Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and autism spectrum disorder, and patients can present with severe behavioural alterations, including hyperactivity, impulsivity and anxiety, in addition to poor language development and seizures as mentioned in this paper.
Abstract: Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and autism spectrum disorder, and patients can present with severe behavioural alterations, including hyperactivity, impulsivity and anxiety, in addition to poor language development and seizures. FXS is a trinucleotide repeat disorder, in which >200 repeats of the CGG motif in FMR1 leads to silencing of the gene and the consequent loss of its product, fragile X mental retardation 1 protein (FMRP). FMRP has a central role in gene expression and regulates the translation of potentially hundreds of mRNAs, many of which are involved in the development and maintenance of neuronal synaptic connections. Indeed, disturbances in neuroplasticity is a key finding in FXS animal models, and an imbalance in inhibitory and excitatory neuronal circuits is believed to underlie many of the clinical manifestations of this disorder. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention, some of which have already moved into clinical trials or clinical practice.

387 citations

Journal ArticleDOI
TL;DR: In this article, a multiple-scale analysis of forest fragmentation based on 30m (0.09 ha pixel 1 ) landcover maps for the conterminous United States is presented.
Abstract: We report a multiple-scale analysis of forest fragmentation based on 30-m (0.09 ha pixel 1 ) landcover maps for the conterminous United States. Each 0.09-ha unit of forest was classified according to fragmentation indexes measured within the surrounding landscape, for five landscape sizes including 2.25, 7.29, 65.61, 590.49, and 5314.41 ha. Most forest is found in fragmented landscapes. With 65.61-ha landscapes, for example, only 9.9% of all forest was contained in a fully forested landscape, and only 46.9% was in a landscape that was more than 90% forested. Overall, 43.5% of forest was located within 90 m of forest edge and 61.8% of forest was located within 150 m of forest edge. Nevertheless, where forest existed, it was usually dominant—at least 72.9% of all forest was in landscapes that were at least 60% forested for all landscape sizes. Small (less than 7.29 ha) perforations in otherwise continuous forest cover accounted for about half of the fragmentation. These results suggest that forests are connected over large regions, but fragmentation is so pervasive that edge effects potentially influence ecological processes on most forested lands.

384 citations

Journal ArticleDOI
TL;DR: In this paper, the impacts of organic matter removal and soil compaction are reported for the 26 oldest installations in the nation-wide network of long-term soil productivity sites, and the results show that complete removal of surface organic matter led to declines in soil C concentration to 20 cm depth and to reduced nutrient availability.

384 citations

Journal ArticleDOI
TL;DR: It does not follow that the usual measures of linkage disequilibrium are zero, but care is needed in the drawing of inferences from marker Hardy-Weinberg disequilibria for disease-susceptibility loci with more than two alleles.
Abstract: We review and extend a recent suggestion that fine-scale localization of a disease-susceptibility locus for a complex disease be done on the basis of deviations from Hardy-Weinberg equilibrium among affected individuals. This deviation is driven by linkage disequilibrium between disease and marker loci in the whole population and requires a heterogeneous genetic basis for the disease. A finding of marker-locus Hardy-Weinberg disequilibrium therefore implies disease heterogeneity and marker-disease linkage disequilibrium. Although a lack of departure of Hardy-Weinberg disequilibrium at marker loci implies that disease susceptibilityweighted linkage disequilibria are zero, given disease heterogeneity, it does not follow that the usual measures of linkage disequilibrium are zero. For disease-susceptibility loci with more than two alleles, therefore, care is needed in the drawing of inferences from marker Hardy-Weinberg disequilibria.

383 citations

Journal ArticleDOI
11 Feb 2005-Cell
TL;DR: Structural and biochemical data for three NR5A members-mouse and human SF-1 and human LRH-1-which reveal that these receptors bind phosphatidyl inositol second messengers and that ligand binding is required for maximal activity are presented.

383 citations


Authors

Showing all 25006 results

NameH-indexPapersCitations
Douglas G. Altman2531001680344
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Daniel J. Jacob16265676530
Christopher P. Cannon1511118108906
James B. Meigs147574115899
Lawrence Corey14677378105
Jeremy K. Nicholson14177380275
Paul M. Matthews14061788802
Herbert Y. Meltzer137114881371
Charles J. Yeo13667276424
Benjamin F. Cravatt13166661932
Timothy R. Billiar13183866133
Peter Brown12990868853
King K. Holmes12460656192
Network Information
Related Institutions (5)
University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

90% related

University of Minnesota
257.9K papers, 11.9M citations

89% related

University of Washington
305.5K papers, 17.7M citations

89% related

University of Pittsburgh
201K papers, 9.6M citations

89% related

National Institutes of Health
297.8K papers, 21.3M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202277
2021988
20201,001
20191,035
20181,051