scispace - formally typeset
Search or ask a question
Institution

Research Triangle Park

NonprofitDurham, North Carolina, United States
About: Research Triangle Park is a nonprofit organization based out in Durham, North Carolina, United States. It is known for research contribution in the topics: Population & Receptor. The organization has 24961 authors who have published 35800 publications receiving 1684504 citations. The organization is also known as: RTP.


Papers
More filters
Journal ArticleDOI
TL;DR: New guidelines on the welfare and use of animals in cancer research are provided, including recommendations on all aspects of cancer research, including: study design, statistics and pilot studies; choice of tumour models and humane endpoints.
Abstract: Animal experiments remain essential to understand the fundamental mechanisms underpinning malignancy and to discover improved methods to prevent, diagnose and treat cancer. Excellent standards of animal care are fully consistent with the conduct of high quality cancer research. Here we provide updated guidelines on the welfare and use of animals in cancer research. All experiments should incorporate the 3Rs: replacement, reduction and refinement. Focusing on animal welfare, we present recommendations on all aspects of cancer research, including: study design, statistics and pilot studies; choice of tumour models (e.g., genetically engineered, orthotopic and metastatic); therapy (including drugs and radiation); imaging (covering techniques, anaesthesia and restraint); humane endpoints (including tumour burden and site); and publication of best practice.

1,239 citations

Journal ArticleDOI
15 Nov 1991-Science
TL;DR: Nitric oxide (NO), a multifaceted bioregulatory agent and an environmental pollutant, can also cause genomic alterations that may contribute to the incidence of deamination-related genetic disease and cancer.
Abstract: Nitric oxide (NO), a multifaceted bioregulatory agent and an environmental pollutant, can also cause genomic alterations. In vitro, NO deaminated deoxynucleosides, deoxynucleotides, and intact DNA at physiological pH. That similar DNA damage can also occur in vivo was tested by treating Salmonella typhimurium strain TA1535 with three NO-releasing compounds, including nitroglycerin. All proved mutagenic. Observed DNA sequence changes were greater than 99% C----T transitions in the hisG46 (CCC) target codon, consistent with a cytosine-deamination mechanism. Because exposure to endogenously and exogenously produced NO is extensive, this mechanism may contribute to the incidence of deamination-related genetic disease and cancer.

1,238 citations

Journal ArticleDOI
TL;DR: The report presents the assessment of the major agreements and issues discussed at the conference onAnalytical Methods Validation to provide guiding principles for validation of analytical methods used in bioavailability, bioequivalence, and pharmacokinetics studies in humans and animals.

1,220 citations

Journal ArticleDOI
TL;DR: Estimates of adult obesity and severe obesity prevalence through 2030 based on nonlinear regression models suggest that by 2030, 51% of the population will be obese and the combined savings over the next 2 decades would be $549.5 billion.

1,219 citations

Journal ArticleDOI
29 Sep 2005-Nature
TL;DR: This mechanism provides an explanation for how an agonist-bound nuclear receptor can be converted from an activator of transcription to a promoter-specific repressor of NF-κB target genes that regulate immunity and homeostasis.
Abstract: Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has essential roles in adipogenesis and glucose homeostasis, and is a molecular target of insulin-sensitizing drugs. Although the ability of PPAR-gamma agonists to antagonize inflammatory responses by transrepression of nuclear factor kappa B (NF-kappaB) target genes is linked to antidiabetic and antiatherogenic actions, the mechanisms remain poorly understood. Here we report the identification of a molecular pathway by which PPAR-gamma represses the transcriptional activation of inflammatory response genes in mouse macrophages. The initial step of this pathway involves ligand-dependent SUMOylation of the PPAR-gamma ligand-binding domain, which targets PPAR-gamma to nuclear receptor corepressor (NCoR)-histone deacetylase-3 (HDAC3) complexes on inflammatory gene promoters. This in turn prevents recruitment of the ubiquitylation/19S proteosome machinery that normally mediates the signal-dependent removal of corepressor complexes required for gene activation. As a result, NCoR complexes are not cleared from the promoter and target genes are maintained in a repressed state. This mechanism provides an explanation for how an agonist-bound nuclear receptor can be converted from an activator of transcription to a promoter-specific repressor of NF-kappaB target genes that regulate immunity and homeostasis.

1,199 citations


Authors

Showing all 25006 results

NameH-indexPapersCitations
Douglas G. Altman2531001680344
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Daniel J. Jacob16265676530
Christopher P. Cannon1511118108906
James B. Meigs147574115899
Lawrence Corey14677378105
Jeremy K. Nicholson14177380275
Paul M. Matthews14061788802
Herbert Y. Meltzer137114881371
Charles J. Yeo13667276424
Benjamin F. Cravatt13166661932
Timothy R. Billiar13183866133
Peter Brown12990868853
King K. Holmes12460656192
Network Information
Related Institutions (5)
University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

90% related

University of Minnesota
257.9K papers, 11.9M citations

89% related

University of Washington
305.5K papers, 17.7M citations

89% related

University of Pittsburgh
201K papers, 9.6M citations

89% related

National Institutes of Health
297.8K papers, 21.3M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202277
2021988
20201,001
20191,035
20181,051