scispace - formally typeset
Search or ask a question

Showing papers by "Rockefeller University published in 2000"


Journal ArticleDOI
16 Nov 2000-Nature
TL;DR: The p53 tumour-suppressor gene integrates numerous signals that control cell life and death, and the disruption of p53 has severe consequences when a highly connected node in the Internet breaks down.
Abstract: The p53 tumour-suppressor gene integrates numerous signals that control cell life and death. As when a highly connected node in the Internet breaks down, the disruption of p53 has severe consequences.

6,605 citations


Journal ArticleDOI
TL;DR: There is a need to develop an automated, rapid, robust, sensitive, and accurate comparative modeling pipeline applicable to whole genomes and to encourage new kinds of applications for the many resulting models, based on their large number and completeness at the level of the family, organism, or functional network.
Abstract: ■ Abstract Comparative modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more pro- teins of known structure (templates). The prediction process consists of fold assign- ment, target-template alignment, model building, and model evaluation. The number of protein sequences that can be modeled and the accuracy of the predictions are in- creasing steadily because of the growth in the number of known protein structures and because of the improvements in the modeling software. Further advances are nec- essary in recognizing weak sequence-structure similarities, aligning sequences with structures, modeling of rigid body shifts, distortions, loops and side chains, as well as detecting errors in a model. Despite these problems, it is currently possible to model with useful accuracy significant parts of approximately one third of all known protein sequences. The use of individual comparative models in biology is already rewarding and increasingly widespread. A major new challenge for comparative modeling is the integration of it with the torrents of data from genome sequencing projects as well as from functional and structural genomics. In particular, there is a need to develop an automated, rapid, robust, sensitive, and accurate comparative modeling pipeline applicable to whole genomes. Such large-scale modeling is likely to encourage new kinds of applications for the many resulting models, based on their large number and completeness at the level of the family, organism, or functional network.

3,085 citations


Journal ArticleDOI
TL;DR: It is demonstrated that Fc-receptor-dependent mechanisms contribute substantially to the action of cytotoxic antibodies against tumors and indicate that an optimal antibody against tumors would bind preferentially to activation Fc receptors and minimally to the inhibitory partner FcγRIIB.
Abstract: Inhibitory receptors have been proposed to modulate the in vivo cytotoxic response against tumor targets for both spontaneous and antibody-dependent pathways. Using a variety of syngenic and xenograft models, we demonstrate here that the inhibitory FcgammaRIIB molecule is a potent regulator of antibody-dependent cell-mediated cytotoxicity in vivo, modulating the activity of FcgammaRIII on effector cells. Although many mechanisms have been proposed to account for the anti-tumor activities of therapeutic antibodies, including extended half-life, blockade of signaling pathways, activation of apoptosis and effector-cell-mediated cytotoxicity, we show here that engagement of Fcgamma receptors on effector cells is a dominant component of the in vivo activity of antibodies against tumors. Mouse monoclonal antibodies, as well as the humanized, clinically effective therapeutic agents trastuzumab (Herceptin(R)) and rituximab (Rituxan(R)), engaged both activation (FcgammaRIII) and inhibitory (FcgammaRIIB) antibody receptors on myeloid cells, thus modulating their cytotoxic potential. Mice deficient in FcgammaRIIB showed much more antibody-dependent cell-mediated cytotoxicity; in contrast, mice deficient in activating Fc receptors as well as antibodies engineered to disrupt Fc binding to those receptors were unable to arrest tumor growth in vivo. These results demonstrate that Fc-receptor-dependent mechanisms contribute substantially to the action of cytotoxic antibodies against tumors and indicate that an optimal antibody against tumors would bind preferentially to activation Fc receptors and minimally to the inhibitory partner FcgammaRIIB.

2,831 citations


Journal ArticleDOI
TL;DR: A new automated modeling technique that significantly improves the accuracy of loop predictions in protein structures by predicting loops of known structure in only approximately correct environments with errors typical of comparative modeling without misalignment is described.
Abstract: Comparative protein structure prediction is limited mostly by the errors in alignment and loop modeling. We describe here a new automated modeling technique that significantly improves the accuracy of loop predictions in protein structures. The positions of all nonhydrogen atoms of the loop are optimized in a fixed environment with respect to a pseudo energy function. The energy is a sum of many spatial restraints that include the bond length, bond angle, and improper dihedral angle terms from the CHARMM-22 force field, statistical preferences for the main-chain and side-chain dihedral angles, and statistical preferences for nonbonded atomic contacts that depend on the two atom types, their distance through space, and separation in sequence. The energy function is optimized with the method of conjugate gradients combined with molecular dynamics and simulated annealing. Typically, the predicted loop conformation corresponds to the lowest energy conformation among 500 independent optimizations. Predictions were made for 40 loops of known structure at each length from 1 to 14 residues. The accuracy of loop predictions is evaluated as a function of thoroughness of conformational sampling, loop length, and structural properties of native loops. When accuracy is measured by local superposition of the model on the native loop, 100, 90, and 30% of 4-, 8-, and 12-residue loop predictions, respectively, had <2 A RMSD error for the mainchain N, C(alpha), C, and O atoms; the average accuracies were 0.59 +/- 0.05, 1.16 +/- 0.10, and 2.61 +/- 0.16 A, respectively. To simulate real comparative modeling problems, the method was also evaluated by predicting loops of known structure in only approximately correct environments with errors typical of comparative modeling without misalignment. When the RMSD distortion of the main-chain stem atoms is 2.5 A, the average loop prediction error increased by 180, 25, and 3% for 4-, 8-, and 12-residue loops, respectively. The accuracy of the lowest energy prediction for a given loop can be estimated from the structural variability among a number of low energy predictions. The relative value of the present method is gauged by (1) comparing it with one of the most successful previously described methods, and (2) describing its accuracy in recent blind predictions of protein structure. Finally, it is shown that the average accuracy of prediction is limited primarily by the accuracy of the energy function rather than by the extent of conformational sampling.

1,999 citations


Journal ArticleDOI
TL;DR: In this article, the effects of stress on the immune system and brain are discussed and two new terms, allostasis and allostatic load, are introduced to supplement and clarify the meanings of stress and homeostasis.

1,661 citations


Journal ArticleDOI
TL;DR: In anxiety disorders, depressive illness, hostile and aggressive states, substance abuse, and post-traumatic stress disorder, allostatic load takes the form of chemical imbalances as well as perturbations in the diurnal rhythm, and in some cases, atrophy of brain structures.

1,566 citations


Journal ArticleDOI
08 Dec 2000-Science
TL;DR: This work establishes a robust, cell-based system for genetic and functional analyses of HCV replication and identifies multiple independent adaptive mutations that cluster in the HCV nonstructural protein NS5A and confer increased replicative ability in vitro.
Abstract: Hepatitis C virus (HCV) infection is a global health problem affecting an estimated 170 million individuals worldwide. We report the identification of multiple independent adaptive mutations that cluster in the HCV nonstructural protein NS5A and confer increased replicative ability in vitro. Among these adaptive mutations were a single amino acid substitution that allowed HCV RNA replication in 10% of transfected hepatoma cells and a deletion of 47 amino acids encompassing the interferon (IFN) sensitivity determining region (ISDR). Independent of the ISDR, IFN-α rapidly inhibited HCV RNA replication in vitro. This work establishes a robust, cell-based system for genetic and functional analyses of HCV replication.

1,492 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated whether exposure to apoptotic or necrotic cells affected dendritic cells' maturation and found that only exposure to the latter induces maturation.
Abstract: Cell death by necrosis is typically associated with inflammation, in contrast to apoptosis. We have identified additional distinctions between the two types of death that occur at the level of dendritic cells (DCs) and which influence the induction of immunity. DCs must undergo changes termed maturation to act as potent antigen-presenting cells. Here, we investigated whether exposure to apoptotic or necrotic cells affected DC maturation. We found that immature DCs efficiently phagocytose a variety of apoptotic and necrotic tumor cells. However, only exposure to the latter induces maturation. The mature DCs express high levels of the DC-restricted markers CD83 and lysosome-associated membrane glycoprotein (DC-LAMP) and the costimulatory molecules CD40 and CD86. Furthermore, they develop into powerful stimulators of both CD4(+) and CD8(+) T cells. Cross-presentation of antigens to CD8(+) T cells occurs after uptake of apoptotic cells. We demonstrate here that optimal cross-presentation of antigens from tumor cells requires two steps: phagocytosis of apoptotic cells by immature DCs, which provides antigenic peptides for major histocompatibility complex class I and class II presentation, and a maturation signal that is delivered by exposure to necrotic tumor cells, their supernatants, or standard maturation stimuli, e.g., monocyte-conditioned medium. Thus, DCs are able to distinguish two types of tumor cell death, with necrosis providing a control that is critical for the initiation of immunity.

1,461 citations


Journal ArticleDOI
TL;DR: Results indicate that, like other cytokine mediators of endotoxin lethality (e.g., TNF and IL-1), extracellular HMG-1 is a regulator of monocyte proinflammatory cytokine synthesis.
Abstract: Lipopolysaccharide (LPS) is lethal to animals because it activates cytokine release, causing septic shock and tissue injury. Early proinflammatory cytokines (e.g., tumor necrosis factor [TNF] and interleukin [IL]-1) released within the first few hours of endotoxemia stimulate mediator cascades that persist for days and can lead to death. High mobility group 1 protein (HMG-1), a ubiquitous DNA-binding protein, was recently identified as a “late” mediator of endotoxin lethality. Anti–HMG-1 antibodies neutralized the delayed increase in serum HMG-1, and protected against endotoxin lethality, even when passive immunization was delayed until after the early cytokine response. Here we examined whether HMG-1 might stimulate cytokine synthesis in human peripheral blood mononuclear cell cultures. Addition of purified recombinant HMG-1 to human monocyte cultures significantly stimulated the release of TNF, IL-1α, IL-1β, IL-1RA, IL-6, IL-8, macrophage inflammatory protein (MIP)-1α, and MIP-1β; but not IL-10 or IL-12. HMG-1 concentrations that activated monocytes were within the pathological range previously observed in endotoxemic animals, and in serum obtained from septic patients. HMG-1 failed to stimulate cytokine release in lymphocytes, indicating that cellular stimulation was specific. Cytokine release after HMG-1 stimulation was delayed and biphasic compared with LPS stimulation. Computer-assisted image analysis demonstrated that peak intensity of HMG-1–induced cellular TNF staining was comparable to that observed after maximal stimulation with LPS. Administration of HMG-1 to Balb/c mice significantly increased serum TNF levels in vivo. Together, these results indicate that, like other cytokine mediators of endotoxin lethality (e.g., TNF and IL-1), extracellular HMG-1 is a regulator of monocyte proinflammatory cytokine synthesis.

1,412 citations


Journal ArticleDOI
06 Oct 2000-Science
TL;DR: A central paradigm has emerged in which the pairing of activation and inhibition is necessary to initiate, amplify, and then terminate immune responses in mice with targeted disruption of inhibitory receptors.
Abstract: With the detailed description and analysis of several inhibitory receptor systems on lymphoid and myeloid cells, a central paradigm has emerged in which the pairing of activation and inhibition is necessary to initiate, amplify, and then terminate immune responses. In some cases, the activating and inhibitory receptors recognize similar ligands, and the net outcome is determined by the relative strength of these opposing signals. The importance of this modulation is demonstrated by the sometimes fatal autoimmune disorders observed in mice with targeted disruption of inhibitory receptors. The significance of these receptors is further evidenced by the conservation of immunoreceptor tyrosine-based inhibitory motifs during their evolution.

1,328 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive approach to classify all components of the yeast NPC (nucleoporins) was taken, which involved identifying all the proteins present in a highly enriched NPC fraction, determining which of these proteins were nucleopors, and localizing each nucleoporin within the NPC.
Abstract: An understanding of how the nuclear pore complex (NPC) mediates nucleocytoplasmic exchange requires a comprehensive inventory of the molecular components of the NPC and a knowledge of how each component contributes to the overall structure of this large molecular translocation machine. Therefore, we have taken a comprehensive approach to classify all components of the yeast NPC (nucleoporins). This involved identifying all the proteins present in a highly enriched NPC fraction, determining which of these proteins were nucleoporins, and localizing each nucleoporin within the NPC. Using these data, we present a map of the molecular architecture of the yeast NPC and provide evidence for a Brownian affinity gating mechanism for nucleocytoplasmic transport.

Journal ArticleDOI
22 Mar 2000-JAMA
TL;DR: An important role for Abeta in mediating initial pathogenic events in AD dementia is supported and treatment strategies targeting the formation, accumulation, or cytotoxic effects of Abeta should be pursued.
Abstract: ContextAlzheimer disease (AD) is characterized neuropathologically by the presence of amyloid β-peptide (Aβ)–containing plaques and neurofibrillary tangles composed of abnormal tau protein. Considerable controversy exists as to whether the extent of accumulation of Aβ correlates with dementia and whether Aβ alterations precede or follow changes in tau.ObjectivesTo determine whether accumulation of Aβ correlates with the earliest signs of cognitive deterioration and to define the relationship between Aβ accumulation and early tau changes.Design, Setting, and PatientsPostmortem cross-sectional study of 79 nursing home residents with Clinical Dementia Rating (CDR) scale scores of 0.0 to 5.0 who died between 1986 and 1997, comparing the levels of Aβ variants in the cortices of the subjects with no (CDR score, 0.0 [n = 16]), questionable (CDR score, 0.5 [n = 11]), mild (CDR score, 1.0 [n = 22]), moderate (CDR score, 2.0 [n = 15]), or severe (CDR score, 4.0 or 5.0 [n = 15]) dementia.Main Outcome MeasuresLevels of total Aβ peptides with intact or truncated amino termini and ending in either amino acid 40 (Aβx-40) or 42 (Aβx-42) in 5 neocortical brain regions as well as levels of tau protein undergoing early conformational changes in frontal cortex, as a function of CDR score.ResultsThe levels of both Aβx-40 and Aβx-42 were elevated even in cases classified as having questionable dementia (CDR score = 0.5), and increases of both peptides correlated with progression of dementia. Levels of the more fibril-prone Aβx-42 peptide were higher than those of Aβx-40 in nondemented cases and remained higher throughout progression of disease in all regions examined. Finally, increases in Aβx-40 and Aβx-42 precede significant tau pathology at least in the frontal cortex, an area chosen for examination because of the absence of neuritic changes in the absence of disease.ConclusionsIn this study, levels of total Aβx-40 and Aβx-42 were elevated early in dementia and levels of both peptides were strongly correlated with cognitive decline. Of particular interest, in the frontal cortex, Aβ was elevated before the occurrence of significant tau pathology. These results support an important role for Aβ in mediating initial pathogenic events in AD dementia and suggest that treatment strategies targeting the formation, accumulation, or cytotoxic effects of Aβ should be pursued.

Journal ArticleDOI
27 Oct 2000-Cell
TL;DR: This work cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken, a novel cation-selective channel that is gated by exposure to hypotonicity within the physiological range.

Journal ArticleDOI
17 Aug 2000-Nature
TL;DR: It is reported that persistence of M. tuberculosis in mice is facilitated by isocitrate lyase (ICL), an enzyme essential for the metabolism of fatty acids, an observation with important implications for the treatment of chronic tuberculosis.
Abstract: Mycobacterium tuberculosis claims more human lives each year than any other bacterial pathogen. Infection is maintained in spite of acquired immunity and resists eradication by antimicrobials. Despite an urgent need for new therapies targeting persistent bacteria, our knowledge of bacterial metabolism throughout the course of infection remains rudimentary. Here we report that persistence of M. tuberculosis in mice is facilitated by isocitrate lyase (ICL), an enzyme essential for the metabolism of fatty acids. Disruption of the icl gene attenuated bacterial persistence and virulence in immune-competent mice without affecting bacterial growth during the acute phase of infection. A link between the requirement for ICL and the immune status of the host was established by the restored virulence of delta icl bacteria in interferon-gamma knockout mice. This link was apparent at the level of the infected macrophage: Activation of infected macrophages increased expression of ICL, and the delta icl mutant was markedly attenuated for survival in activated but not resting macrophages. These data suggest that the metabolism of M. tuberculosis in vivo is profoundly influenced by the host response to infection, an observation with important implications for the treatment of chronic tuberculosis.

Journal ArticleDOI
15 May 2000-Oncogene
TL;DR: The importance of STAT activation to growth control in experiments using anti-sense molecules or dominant negative STAT protein encoding constructs performed in cell lines or studies in animals lacking specific STATs strongly indicate that STATs play an important role in controlling cell cycle progression and apoptosis.
Abstract: The STAT proteins (Signal Transducers and Activators of Transcription), were identified in the last decade as transcription factors which were critical in mediating virtually all cytokine driven signaling. These proteins are latent in the cytoplasm and become activated through tyrosine phosphorylation which typically occurs through cytokine receptor associated kinases (JAKs) or growth factor receptor tyrosine kinases. Recently a number of non-receptor tyrosine kinases (for example src and abl) have been found to cause STAT phosphorylation. Phosphorylated STATs form homo- or hetero-dimers, enter the nucleus and working coordinately with other transcriptional co-activators or transcription factors lead to increased transcriptional initiation. In normal cells and in animals, ligand dependent activation of the STATs is a transient process, lasting for several minutes to several hours. In contrast, in many cancerous cell lines and tumors, where growth factor dysregulation is frequently at the heart of cellular transformation, the STAT proteins (in particular Stats 1, 3 and 5) are persistently tyrosine phosphorylated or activated. The importance of STAT activation to growth control in experiments using anti-sense molecules or dominant negative STAT protein encoding constructs performed in cell lines or studies in animals lacking specific STATs strongly indicate that STATs play an important role in controlling cell cycle progression and apoptosis. Stat1 plays an important role in growth arrest, in promoting apoptosis and is implicated as a tumor suppressor; while Stats 3 and 5 are involved in promoting cell cycle progression and cellular transformation and preventing apoptosis. Many questions remain including: (1) a better understanding of how the STAT proteins through association with other factors increase transcription initiation; (2) a more complete definition of the sets of genes which are activated by different STATs and (3) how these sets of activated genes differ as a function of cell type. Finally, in the context of many cancers, where STATs are frequently persistently activated, an understanding of the mechanisms leading to their constitutive activation and defining the potential importance of persistent STAT activation in human tumorigenesis remains. Oncogene (2000).

Journal ArticleDOI
01 Dec 2000-Neuron
TL;DR: It is proposed that ependymal Noggin production creates a neurogenic environment in the adjacent SVZ by blocking endogenous BMP signaling.

Journal ArticleDOI
TL;DR: Neither toxic nor adverse physiological effects of the XVE system have been observed in transgenic Arabidopsis plants under all the conditions tested and it appears to be a reliable and efficient chemical-inducible system for regulating transgene expression in plants.
Abstract: We have developed an estrogen receptor-based chemical-inducible system for use in transgenic plants. A chimeric transcription activator, XVE, was assembled by fusion of the DNA-binding domain of the bacterial repressor LexA (X), the acidic transactivating domain of VP16 (V) and the regulatory region of the human estrogen receptor (E; ER). The transactivating activity of the chimeric XVE factor, whose expression was controlled by the strong constitutive promoter G10-90, was strictly regulated by estrogens. In transgenic Arabidopsis and tobacco plants, estradiol-activated XVE can stimulate expression of a GFP reporter gene controlled by the target promoter, which consists of eight copies of the LexA operator fused upstream of the -46 35S minimal promoter. Upon induction by estradiol, GFP expression levels can be eightfold higher than that transcribed from a 35S promoter, whereas the uninduced controls have no detectable GFP transcripts, as monitored by Northern blot analysis. Neither toxic nor adverse physiological effects of the XVE system have been observed in transgenic Arabidopsis plants under all the conditions tested. The XVE system thus appears to be a reliable and efficient chemical-inducible system for regulating transgene expression in plants.

Journal ArticleDOI
TL;DR: It is proposed that diet can be used to modulate the risk of developing AD and high dietary cholesterol increases Aβ accumulation and accelerates the AD-related pathology observed in this animal model.

Journal ArticleDOI
TL;DR: It is suggested that intracellular Aβ42 accumulation is an early event in neuronal dysfunction and that preventing intraneuronal A β42 aggregation may be an important therapeutic direction for the treatment of AD.
Abstract: Alzheimer's disease (AD) is characterized by the deposition of senile plaques (SPs) and neurofibrillary tangles (NFTs) in vulnerable brain regions. SPs are composed of aggregated β-amyloid (Aβ) 40/42(43) peptides. Evidence implicates a central role for Aβ in the pathophysiology of AD. Mutations in βAPP and presenilin 1 (PS1) lead to elevated secretion of Aβ, especially the more amyloidogenic Aβ42. Immunohistochemical studies have also emphasized the importance of Aβ42 in initiating plaque pathology. Cell biological studies have demonstrated that Aβ is generated intracellularly. Recently, endogenous Aβ42 staining was demonstrated within cultured neurons by confocal immunofluorescence microscopy and within neurons of PS1 mutant transgenic mice. A central question about the role of Aβ in disease concerns whether extracellular Aβ deposition or intracellular Aβ accumulation initiates the disease process. Here we report that human neurons in AD-vulnerable brain regions specifically accumulate γ-cleaved Aβ42 and suggest that this intraneuronal Aβ42 immunoreactivity appears to precede both NFT and Aβ plaque deposition. This study suggests that intracellular Aβ42 accumulation is an early event in neuronal dysfunction and that preventing intraneuronal Aβ42 aggregation may be an important therapeutic direction for the treatment of AD.

Journal ArticleDOI
28 Sep 2000-Nature
TL;DR: It is shown that arrow gene function is essential in cells receiving Wingless input and that it acts upstream of Dishevelled, suggesting a new and conserved function for this LRP subfamily in Wingless/Wnt signal reception.
Abstract: The Wnt family of secreted molecules functions in cell-fate determination and morphogenesis during development in both vertebrates and invertebrates (reviewed in ref. 1). Drosophila Wingless is a founding member of this family, and many components of its signal transduction cascade have been identified, including the Frizzled class of receptor. But the mechanism by which the Wingless signal is received and transduced across the membrane is not completely understood. Here we describe a gene that is necessary for all Wingless signalling events in Drosophila. We show that arrow gene function is essential in cells receiving Wingless input and that it acts upstream of Dishevelled. arrow encodes a single-pass transmembrane protein, indicating that it may be part of a receptor complex with Frizzled class proteins. Arrow is a low-density lipoprotein (LDL)-receptor-related protein (LRP), strikingly homologous to murine and human LRP5 and LRP6. Thus, our data suggests a new and conserved function for this LRP subfamily in Wingless/Wnt signal reception.

Journal ArticleDOI
18 Aug 2000-Science
TL;DR: To clone pigs from differentiated cells, microinjected the nuclei of porcine (Sus scrofa) fetal fibroblasts into enucleated oocytes, and development was induced by electroactivation, which produced an apparently normal female piglet.
Abstract: Pig cloning will have a marked impact on the optimization of meat production and xenotransplantation. To clone pigs from differentiated cells, we microinjected the nuclei of porcine (Sus scrofa) fetal fibroblasts into enucleated oocytes, and development was induced by electroactivation. The transfer of 110 cloned embryos to four surrogate mothers produced an apparently normal female piglet. The clonal provenance of the piglet was indicated by her coat color and confirmed by DNA microsatellite analysis.

Journal ArticleDOI
TL;DR: In this paper, the authors reported that TRF2, a TRF1-related protein previously implicated in protection of chromosome ends, is a second negative regulator of telomere length.
Abstract: Telomere length in human cells is controlled by a homeostasis mechanism that involves telomerase and the negative regulator of telomere length, TRF1 (TTAGGG repeat binding factor 1). Here we report that TRF2, a TRF1-related protein previously implicated in protection of chromosome ends, is a second negative regulator of telomere length. Overexpression of TRF2 results in the progressive shortening of telomere length, similar to the phenotype observed with TRF1. However, while induction of TRF1 could be maintained over more than 300 population doublings and resulted in stable, short telomeres, the expression of exogenous TRF2 was extinguished and the telomeres eventually regained their original length. Consistent with their role in measuring telomere length, indirect immunofluorescence indicated that both TRF1 and TRF2 bind to duplex telomeric DNA in vivo and are more abundant on telomeres with long TTAGGG repeat tracts. Neither TRF1 nor TRF2 affected the expression level of telomerase. Furthermore, the presence of TRF1 or TRF2 on a short linear telomerase substrate did not inhibit the enzymatic activity of telomerase in vitro. These findings are consistent with the recently proposed t loop model of telomere length homeostasis in which telomerase-dependent telomere elongation is blocked by sequestration of the 3' telomere terminus in TRF1- and TRF2-induced telomeric loops.

Journal ArticleDOI
01 Aug 2000-Immunity
TL;DR: The results suggest that deficiency of RIIB on B cells leads to autoimmune disease in specific genetic backgrounds, thus identifying it as a susceptibility factor under the influence of epistatic modifiers for the development of autoimmunity.

Journal ArticleDOI
TL;DR: The effect of bacterial motion on micron-scale beads in a freely suspended soap film is studied, and the measured mean-square displacements indicate superdiffusion in short times and normal diffusion in long times.
Abstract: We study the effect of bacterial motion on micron-scale beads in a freely suspended soap film. Given the sizes of bacteria and beads, the geometry of the experiment is quasi-two-dimensional. Large positional fluctuations are observed for beads as large as $10\ensuremath{\mu}\mathrm{m}$ in diameter, and the measured mean-square displacements indicate superdiffusion in short times and normal diffusion in long times. Though the phenomenon is similar to Brownian motions of small particles, its physical origin is different and can be attributed to the collective dynamics of bacteria.

Journal ArticleDOI
06 Apr 2000-Nature
TL;DR: The identification of additional molecules that comprise this homeostatic system will provide further insights into the molecular basis of obesity, and possibilities for new treatments.
Abstract: Obesity has increased at an alarming rate in recent years and is now a worldwide public health problem. In addition to suffering poor health and an increased risk of illnesses such as hypertension and heart disease, obese people are often stigmatized socially. But major advances have now been made in identifying the components of the homeostatic system that regulates body weight, including several of the genes responsible for animal and human obesity. A key element of the physiological system is the hormone leptin, which acts on nerve cells in the brain (and elsewhere) to regulate food intake and body weight. The identification of additional molecules that comprise this homeostatic system will provide further insights into the molecular basis of obesity, and possibilities for new treatments.

Journal ArticleDOI
TL;DR: A fully automated procedure that measures parametrically the similarity between songs, and can be used to examine imitation accuracy across acoustic features; song development; the effect of brain lesions on specific song features; and variability across different renditions of a song or a call.

Journal ArticleDOI
TL;DR: It is proposed that the MRE11 complex functions at telomeres, possibly by modulating t-loop formation, and is shown that RAD50 protein is present in TRF2 immunocomplexes.
Abstract: Telomeres allow cells to distinguish natural chromosome ends from damaged DNA and protect the ends from degradation and fusion In human cells, telomere protection depends on the TTAGGG repeat binding factor, TRF2 (refs 1-4), which has been proposed to remodel telomeres into large duplex loops (t-loops) Here we show by nanoelectrospray tandem mass spectrometry that RAD50 protein is present in TRF2 immunocomplexes Protein blotting showed that a small fraction of RAD50, MRE11 and the third component of the MRE11 double-strand break (DSB) repair complex, the Nijmegen breakage syndrome protein (NBS1), is associated with TRF2 Indirect immunofluorescence demonstrated the presence of RAD50 and MRE11 at interphase telomeres NBS1 was associated with TRF2 and telomeres in S phase, but not in G1 or G2 Although the MRE11 complex accumulated in irradiation-induced foci (IRIFs) in response to gamma-irradiation, TRF2 did not relocate to IRIFs and irradiation did not affect the association of TRF2 with the MRE11 complex, arguing against a role for TRF2 in DSB repair Instead, we propose that the MRE11 complex functions at telomeres, possibly by modulating t-loop formation

Journal ArticleDOI
TL;DR: It is important to appreciate how hippocampal dysfunction may play a role in the symptoms of the psychiatric illness and, from a therapeutic standpoint, to distinguish between a permanent loss of cells and a reversible remodeling to develop treatment strategies to prevent or reverse deficits.

Journal ArticleDOI
TL;DR: The results of this study demonstrate that the nature of the p53 response in diverse mRNA species depends on the levels of p53 protein in a cell, the type of inducing agent or event, and the cell type employed.
Abstract: Oligonucleotide microarrays were employed to quantitate mRNA levels from a large number of genes regulated by the p53 transcription factor. Responses to DNA damage and to zinc-inducible p53 were compared for their transcription patterns in cell culture. A cluster analysis of these data demonstrates that genes induced by gamma radiation, UV radiation, and the zinc-induced p53 form distinct sets and subsets with a few genes in common to all these treatments. Cell type- or cell line-specific p53 responses were detected. When p53 proteins were induced with zinc, the kinetics of induction or repression of mRNAs from p53-responsive genes fell into eight distinct classes, five different kinetics of induction, and three different kinetics of repression. In addition, low levels of p53 in a cell induced or repressed only a subset of genes observed at higher p53 levels. The results of this study demonstrate that the nature of the p53 response in diverse mRNA species depends on the levels of p53 protein in a cell, the type of inducing agent or event, and the cell type employed. Of 6000 genes examined for p53 regulatory responses, 107 induced and 54 repressed genes fell into categories of apoptosis and growth arrest, cytoskeletal functions, growth factors and their inhibitors, extracellular matrix, and adhesion genes.

Journal ArticleDOI
TL;DR: The protein search engine "ProFound", which employs a Bayesian algorithm to identify proteins from protein databases using mass spectrometric peptide mapping data, consistently identifies the correct protein(s) even when the data quality is relatively low or when the sample consists of a simple mixture of proteins.
Abstract: We describe the protein search engine “ProFound”, which employs a Bayesian algorithm to identify proteins from protein databases using mass spectrometric peptide mapping data The algorithm ranks protein candidates by taking into account individual properties of each protein in the database as well as other information relevant to the peptide mapping experiment The program consistently identifies the correct protein(s) even when the data quality is relatively low or when the sample consists of a simple mixture of proteins Illustrative examples of protein identifications are provided