scispace - formally typeset
Search or ask a question

Showing papers by "Rockefeller University published in 2011"


Journal ArticleDOI
28 Apr 2011-Nature
TL;DR: It is shown that different viruses are targeted by unique sets of ISGs, and that each viral species is susceptible to multiple antiviral genes, which together encompass a range of inhibitory activities.
Abstract: The type I interferon response protects cells against invading viral pathogens. The cellular factors that mediate this defence are the products of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified since their discovery more than 25 years ago, only a few have been characterized with respect to antiviral activity. For most ISG products, little is known about their antiviral potential, their target specificity and their mechanisms of action. Using an overexpression screening approach, here we show that different viruses are targeted by unique sets of ISGs. We find that each viral species is susceptible to multiple antiviral genes, which together encompass a range of inhibitory activities. To conduct the screen, more than 380 human ISGs were tested for their ability to inhibit the replication of several important human and animal viruses, including hepatitis C virus, yellow fever virus, West Nile virus, chikungunya virus, Venezuelan equine encephalitis virus and human immunodeficiency virus type-1. Broadly acting effectors included IRF1, C6orf150 (also known as MB21D1), HPSE, RIG-I (also known as DDX58), MDA5 (also known as IFIH1) and IFITM3, whereas more targeted antiviral specificity was observed with DDX60, IFI44L, IFI6, IFITM2, MAP3K14, MOV10, NAMPT (also known as PBEF1), OASL, RTP4, TREX1 and UNC84B (also known as SUN2). Combined expression of pairs of ISGs showed additive antiviral effects similar to those of moderate type I interferon doses. Mechanistic studies uncovered a common theme of translational inhibition for numerous effectors. Several ISGs, including ADAR, FAM46C, LY6E and MCOLN2, enhanced the replication of certain viruses, highlighting another layer of complexity in the highly pleiotropic type I interferon system.

1,926 citations


Journal ArticleDOI
22 Jul 2011-Cell
TL;DR: A brain polyribosome-programmed translation system is developed, revealing that FMRP reversibly stalls ribosomes specifically on its target mRNAs and suggests multiple targets for clinical intervention in FXS and ASD.

1,861 citations


Journal ArticleDOI
25 Aug 2011-Nature
TL;DR: The successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion is described.
Abstract: Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression.

1,146 citations


Journal ArticleDOI
16 Sep 2011-Science
TL;DR: Anti-HIV broadly neutralizing antibodies with similar specificities and modes of binding were found in multiple HIV-infected individuals, and cloned 576 new HIV antibodies from four unrelated individuals to determine whether they are part of a larger group of related molecules.
Abstract: Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike.

1,110 citations


Journal ArticleDOI
TL;DR: Some of the most potent antiviral effectors reinforce the system by further inducing IFN or ISGs, suggesting that some viruses may have evolved to co-opt IFN effectors for a survival advantage.

1,068 citations


Journal ArticleDOI
TL;DR: To explore how the problem of antibiotic resistance might best be addressed, a group of 30 scientists from academia and industry gathered at the Banbury Conference Centre in Cold Spring Harbor, New York, USA, from 16 to 18 May 2011.
Abstract: The development and spread of antibiotic resistance in bacteria is a universal threat to both humans and animals that is generally not preventable but can nevertheless be controlled, and it must be tackled in the most effective ways possible. To explore how the problem of antibiotic resistance might best be addressed, a group of 30 scientists from academia and industry gathered at the Banbury Conference Centre in Cold Spring Harbor, New York, USA, from 16 to 18 May 2011. From these discussions there emerged a priority list of steps that need to be taken to resolve this global crisis.

929 citations


Journal ArticleDOI
01 Apr 2011-Science
TL;DR: These experiments of nature indicate that human IL-17A andIL-17F are essential for mucocutaneous immunity against C. albicans, but otherwise largely redundant.
Abstract: Chronic mucocutaneous candidiasis disease (CMCD) is characterized by recurrent or persistent infections of the skin, nails, and oral and genital mucosae caused by Candida albicans and, to a lesser extent, Staphylococcus aureus , in patients with no other infectious or autoimmune manifestations. We report two genetic etiologies of CMCD: autosomal recessive deficiency in the cytokine receptor, interleukin-17 receptor A (IL-17RA), and autosomal dominant deficiency of the cytokine interleukin-17F (IL-17F). IL-17RA deficiency is complete, abolishing cellular responses to IL-17A and IL-17F homo- and heterodimers. By contrast, IL-17F deficiency is partial, with mutant IL-17F–containing homo- and heterodimers displaying impaired, but not abolished, activity. These experiments of nature indicate that human IL-17A and IL-17F are essential for mucocutaneous immunity against C. albicans , but otherwise largely redundant.

920 citations


Journal ArticleDOI
28 Jan 2011-Science
TL;DR: How genomic plasticity within lineages of recombinogenic bacteria can permit adaptation to clinical interventions over remarkably short time scales is detailed.
Abstract: Epidemiological studies of the naturally transformable bacterial pathogen Streptococcus pneumoniae have previously been confounded by high rates of recombination. Sequencing 240 isolates of the PMEN1 (Spain23F-1) multidrug-resistant lineage enabled base substitutions to be distinguished from polymorphisms arising through horizontal sequence transfer. More than 700 recombinations were detected, with genes encoding major antigens frequently affected. Among these were 10 capsule-switching events, one of which accompanied a population shift as vaccine-escape serotype 19A isolates emerged in the USA after the introduction of the conjugate polysaccharide vaccine. The evolution of resistance to fluoroquinolones, rifampicin, and macrolides was observed to occur on multiple occasions. This study details how genomic plasticity within lineages of recombinogenic bacteria can permit adaptation to clinical interventions over remarkably short time scales.

870 citations


Journal ArticleDOI
TL;DR: The role of brain plasticity in adaptation to, and pathophysiology resulting from, stressful experiences is focused on and interventions to prevent and treat chronic and prevalent health conditions via allodynamic brain mechanisms are considered.
Abstract: The brain is the key organ of stress processes. It determines what individuals will experience as stressful, it orchestrates how individuals will cope with stressful experiences, and it changes both functionally and structurally as a result of stressful experiences. Within the brain, a distributed, dynamic, and plastic neural circuitry coordinates, monitors, and calibrates behavioral and physiological stress response systems to meet the demands imposed by particular stressors. These allodynamic processes can be adaptive in the short term (allostasis) and maladaptive in the long term (allostatic load). Critically, these processes involve bidirectional signaling between the brain and body. Consequently, allostasis and allostatic load can jointly affect vulnerability to brain-dependent and stress-related mental and physical health conditions. This review focuses on the role of brain plasticity in adaptation to, and pathophysiology resulting from, stressful experiences. It also considers interventions to prev...

852 citations


Journal ArticleDOI
TL;DR: Findings link TNC to pathways that support the fitness of metastasis-initiating breast cancer cells and highlight the relevance of TNC as an extracellular matrix protein of stem cell niches of the metastatic niche.
Abstract: Tenascin C is an extracellular matrix protein previously linked to breast cancer metastasis. Here the authors uncover how tenascin C promotes the fitness of metastasis-initiating cells by sustaining the stem and survival signaling pathways NOTCH and Wnt through specific regulation of Msi1 and Lgr5, respectively.

758 citations


Journal ArticleDOI
S. Chatrchyan, Vardan Khachatryan, Albert M. Sirunyan, A. Tumasyan  +2268 moreInstitutions (158)
TL;DR: In this article, the transverse momentum balance in dijet and γ/Z+jets events is used to measure the jet energy response in the CMS detector, as well as the transversal momentum resolution.
Abstract: Measurements of the jet energy calibration and transverse momentum resolution in CMS are presented, performed with a data sample collected in proton-proton collisions at a centre-of-mass energy of 7TeV, corresponding to an integrated luminosity of 36pb−1. The transverse momentum balance in dijet and γ/Z+jets events is used to measure the jet energy response in the CMS detector, as well as the transverse momentum resolution. The results are presented for three different methods to reconstruct jets: a calorimeter-based approach, the ``Jet-Plus-Track'' approach, which improves the measurement of calorimeter jets by exploiting the associated tracks, and the ``Particle Flow'' approach, which attempts to reconstruct individually each particle in the event, prior to the jet clustering, based on information from all relevant subdetectors

Journal ArticleDOI
TL;DR: Whole-exome sequencing reveals activating STAT1 mutations in some patients with autosomal dominant chronic mucocutaneous candidiasis disease.
Abstract: Chronic mucocutaneous candidiasis disease (CMCD) may be caused by autosomal dominant (AD) IL-17F deficiency or autosomal recessive (AR) IL-17RA deficiency. Here, using whole-exome sequencing, we identified heterozygous germline mutations in STAT1 in 47 patients from 20 kindreds with AD CMCD. Previously described heterozygous STAT1 mutant alleles are loss-of-function and cause AD predisposition to mycobacterial disease caused by impaired STAT1-dependent cellular responses to IFN-γ. Other loss-of-function STAT1 alleles cause AR predisposition to intracellular bacterial and viral diseases, caused by impaired STAT1-dependent responses to IFN-α/β, IFN-γ, IFN-λ, and IL-27. In contrast, the 12 AD CMCD-inducing STAT1 mutant alleles described here are gain-of-function and increase STAT1-dependent cellular responses to these cytokines, and to cytokines that predominantly activate STAT3, such as IL-6 and IL-21. All of these mutations affect the coiled-coil domain and impair the nuclear dephosphorylation of activated STAT1, accounting for their gain-of-function and dominance. Stronger cellular responses to the STAT1-dependent IL-17 inhibitors IFN-α/β, IFN-γ, and IL-27, and stronger STAT1 activation in response to the STAT3-dependent IL-17 inducers IL-6 and IL-21, hinder the development of T cells producing IL-17A, IL-17F, and IL-22. Gain-of-function STAT1 alleles therefore cause AD CMCD by impairing IL-17 immunity.

Journal ArticleDOI
TL;DR: In this article, the authors studied the effect of collision centrality on the transverse momentum of PbPb collisions at the LHC with a data sample of 6.7 inverse microbarns.
Abstract: Jet production in PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV was studied with the CMS detector at the LHC, using a data sample corresponding to an integrated luminosity of 6.7 inverse microbarns. Jets are reconstructed using the energy deposited in the CMS calorimeters and studied as a function of collision centrality. With increasing collision centrality, a striking imbalance in dijet transverse momentum is observed, consistent with jet quenching. The observed effect extends from the lower cut-off used in this study (jet transverse momentum = 120 GeV/c) up to the statistical limit of the available data sample (jet transverse momentum approximately 210 GeV/c). Correlations of charged particle tracks with jets indicate that the momentum imbalance is accompanied by a softening of the fragmentation pattern of the second most energetic, away-side jet. The dijet momentum balance is recovered when integrating low transverse momentum particles distributed over a wide angular range relative to the direction of the away-side jet.

Journal ArticleDOI
TL;DR: Comparison of the spatial patterns surrounding HuR and miRNA binding sites provided functional evidence for HuR-dependent antagonism of proximal miRNA-mediated repression and it is concluded that HuR coordinates gene expression outcomes at multiple interconnected steps of RNA processing.

Journal ArticleDOI
08 Dec 2011-Neuron
TL;DR: It is observed that optical stimulation of DA neurons in the ventral tegmental area of Th::Cre rats is sufficient to support vigorous intracranial self-stimulation (ICSS), extending the generalizability of optogenetics to traditionally non-genetically-tractable but vital animal models.

Journal ArticleDOI
17 Mar 2011-Nature
TL;DR: Findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness.
Abstract: Geographic atrophy (GA), an untreatable advanced form of age-related macular degeneration, results from retinal pigmented epithelium (RPE) cell degeneration. Here we show that the microRNA (miRNA)-processing enzyme DICER1 is reduced in the RPE of humans with GA, and that conditional ablation of Dicer1, but not seven other miRNA-processing enzymes, induces RPE degeneration in mice. DICER1 knockdown induces accumulation of Alu RNA in human RPE cells and Alu-like B1 and B2 RNAs in mouse RPE. Alu RNA is increased in the RPE of humans with GA, and this pathogenic RNA induces human RPE cytotoxicity and RPE degeneration in mice. Antisense oligonucleotides targeting Alu/B1/B2 RNAs prevent DICER1 depletion-induced RPE degeneration despite global miRNA downregulation. DICER1 degrades Alu RNA, and this digested Alu RNA cannot induce RPE degeneration in mice. These findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness.

Journal ArticleDOI
TL;DR: These findings define a class of human primary immunodeficiencies that affect the differentiation of mononuclear phagocytes and show that human IRF8 is critical for the development of monocytes and dendritic cells and for antimycobacterial immunity.
Abstract: BACKGROUND The genetic analysis of human primary immunodeficiencies has defined the contribution of specific cell populations and molecular pathways in the host defense against infection. Disseminated infection caused by bacille Calmette-Guerin (BCG) vaccines is an early manifestation of primary immunodeficiencies, such as severe combined immunodeficiency. In many affected persons, the cause of disseminated BCG disease is unexplained. METHODS We evaluated an infant presenting with features of severe immunodeficiency, including early-onset disseminated BCG disease, who required hematopoietic stem-cell transplantation. We also studied two otherwise healthy subjects with a history of disseminated but curable BCG disease in childhood. We characterized the monocyte and dendritic-cell compartments in these three subjects and sequenced candidate genes in which mutations could plausibly confer susceptibility to BCG disease. RESULTS We detected two distinct disease-causing mutations affecting interferon regulatory factor 8 (IRF8). Both K108E and T80A mutations impair IRF8 transcriptional activity by disrupting the interaction between IRF8 and DNA. The K108E variant was associated with an autosomal recessive severe immunodeficiency with a complete lack of circulating monocytes and dendritic cells. The T80A variant was associated with an autosomal dominant, milder immunodeficiency and a selective depletion of CD11c+CD1c+ circulating dendritic cells. CONCLUSIONS These findings define a class of human primary immunodeficiencies that affect the differentiation of mononuclear phagocytes. They also show that human IRF8 is critical for the development of monocytes and dendritic cells and for antimycobacterial immunity. (Funded by the Medical Research Council and others.).

Journal ArticleDOI
07 Jul 2011-Nature
TL;DR: This novel DC-SIGN–TH2 pathway initiated by an endogenous ligand, sFc, provides an intrinsic mechanism for maintaining immune homeostasis that could be manipulated to provide therapeutic benefit in autoimmune diseases.
Abstract: High-dose intravenous immunoglobulin is a widely used therapeutic preparation of highly purified immunoglobulin G (IgG) antibodies. It is administered at high doses (1-2 grams per kilogram) for the suppression of autoantibody-triggered inflammation in a variety of clinical settings. This anti-inflammatory activity of intravenous immunoglobulin is triggered by a minor population of IgG crystallizable fragments (Fcs), with glycans terminating in α2,6 sialic acids (sFc) that target myeloid regulatory cells expressing the lectin dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN; also known as CD209). Here, to characterize this response in detail, we generated humanized DC-SIGN mice (hDC-SIGN), and demonstrate that the anti-inflammatory activity of intravenous immunoglobulin can be recapitulated by the transfer of bone-marrow-derived sFc-treated hDC-SIGN(+) macrophages or dendritic cells into naive recipients. Furthermore, sFc administration results in the production of IL-33, which, in turn, induces expansion of IL-4-producing basophils that promote increased expression of the inhibitory Fc receptor FcγRIIB on effector macrophages. Systemic administration of the T(H)2 cytokines IL-33 or IL-4 upregulates FcγRIIB on macrophages, and suppresses serum-induced arthritis. Consistent with these results, transfer of IL-33-treated basophils suppressed induced arthritic inflammation. This novel DC-SIGN-T(H)2 pathway initiated by an endogenous ligand, sFc, provides an intrinsic mechanism for maintaining immune homeostasis that could be manipulated to provide therapeutic benefit in autoimmune diseases.

Journal ArticleDOI
TL;DR: Some basic topics are introduced to frame the more detailed reviews in following articles, including the cellular strategies that define basic themes governing neuronal wiring throughout life, an enumeration of the molecular cues and receptors known to play key guidance roles during neural development, and an overview of the signaling mechanisms that transduce guidance information into growth-cone steering.
Abstract: The complex patterns of neuronal wiring in the adult nervous system depend on a series of guidance events during neural development that establish a framework on which functional circuits can be built. In this subject collection, the cellular and molecular mechanisms that underlie neuronal guidance are considered from several perspectives, ranging from how cytoskeletal dynamics within extending neuronal growth cones steer axons, to how guidance cues influence synaptogenesis. We introduce here some basic topics to frame the more detailed reviews in following articles, including the cellular strategies that define basic themes governing neuronal wiring throughout life, an enumeration of the molecular cues and receptors known to play key guidance roles during neural development, and an overview of the signaling mechanisms that transduce guidance information into growth-cone steering.

Journal ArticleDOI
TL;DR: The data predict that Psoriasis therapy with either TNF or IL-17 antagonists will produce greater modulation of the synergistic/additive gene set, which consists of the most highly expressed genes in psoriasis skin lesions.

Journal ArticleDOI
TL;DR: This Review addresses how the unique development and functions of intestinal IELs allow them to achieve a balance of protective immunity with an ability to safeguard the integrity of the epithelial barrier.
Abstract: The intraepithelial lymphocytes (IELs) that reside within the epithelium of the intestine form one of the main branches of the immune system. As IELs are located at this critical interface between the core of the body and the outside environment, they must balance protective immunity with an ability to safeguard the integrity of the epithelial barrier: failure to do so would compromise homeostasis of the organism. In this Review, we address how the unique development and functions of intestinal IELs allow them to achieve this balance.

Journal ArticleDOI
TL;DR: By housing mice in 20-h light/dark cycles, incongruous with their endogenous ∼24-h circadian period, this model can provide a foundation to understand how environmental disruption of circadian rhythms impacts the brain, behavior, and physiology.
Abstract: Circadian (daily) rhythms are present in almost all plants and animals. In mammals, a brain clock located in the hypothalamic suprachiasmatic nucleus maintains synchrony between environmental light/dark cycles and physiology and behavior. Over the past 100 y, especially with the advent of electric lighting, modern society has resulted in a round-the-clock lifestyle, in which natural connections between rest/activity cycles and environmental light/dark cycles have been degraded or even broken. Instances in which rapid changes to sleep patterns are necessary, such as transmeridian air travel, demonstrate negative effects of acute circadian disruption on physiology and behavior. However, the ramifications of chronic disruption of the circadian clock for mental and physical health are not yet fully understood. By housing mice in 20-h light/dark cycles, incongruous with their endogenous ∼24-h circadian period, we were able to model the effects of chronic circadian disruption noninvasively. Housing in these conditions results in accelerated weight gain and obesity, as well as changes in metabolic hormones. In the brain, circadian-disrupted mice exhibit a loss of dendritic length and decreased complexity of neurons in the prelimbic prefrontal cortex, a brain region important in executive function and emotional control. Disrupted animals show decreases in cognitive flexibility and changes in emotionality consistent with the changes seen in neural architecture. How our findings translate to humans living and working in chronic circadian disruption is unknown, but we believe that this model can provide a foundation to understand how environmental disruption of circadian rhythms impacts the brain, behavior, and physiology.

Journal ArticleDOI
TL;DR: Chemically defined nucleosome arrays were used to demonstrate that H2B ubiquitylation (uH2B), a modification associated with transcription, interferes with chromatin compaction and leads to an open and biochemically accessible fiber conformation.
Abstract: Regulation of chromatin structure involves histone posttranslational modifications that can modulate intrinsic properties of the chromatin fiber to change the chromatin state. We used chemically defined nucleosome arrays to demonstrate that H2B ubiquitylation (uH2B), a modification associated with transcription, interferes with chromatin compaction and leads to an open and biochemically accessible fiber conformation. Notably, these effects were specific for ubiquitin, as compaction of chromatin modified with a similar ubiquitin-sized protein, Hub1, was only weakly affected. Applying a fluorescence-based method, we found that uH2B acts through a mechanism distinct from H4 tail acetylation, a modification known to disrupt chromatin folding. Finally, incorporation of both uH2B and acetylated H4 resulted in synergistic inhibition of higher-order chromatin structure formation, possibly a result of their distinct modes of action.

Journal ArticleDOI
09 Jun 2011-Nature
TL;DR: It is demonstrated that HCV can be blocked by passive immunization, as well as showing that a recombinant vaccinia virus vector induces humoral immunity and confers partial protection against heterologous challenge.
Abstract: Hepatitis C virus (HCV) remains a major medical problem. Antiviral treatment is only partially effective and a vaccine does not exist. Development of more effective therapies has been hampered by the lack of a suitable small animal model. Although xenotransplantation of immunodeficient mice with human hepatocytes has shown promise, these models are subject to important challenges. Building on the previous observation that CD81 and occludin comprise the minimal human factors required to render mouse cells permissive to HCV entry in vitro, we attempted murine humanization via a genetic approach. Here we show that expression of two human genes is sufficient to allow HCV infection of fully immunocompetent inbred mice. We establish a precedent for applying mouse genetics to dissect viral entry and validate the role of scavenger receptor type B class I for HCV uptake. We demonstrate that HCV can be blocked by passive immunization, as well as showing that a recombinant vaccinia virus vector induces humoral immunity and confers partial protection against heterologous challenge. This system recapitulates a portion of the HCV life cycle in an immunocompetent rodent for the first time, opening opportunities for studying viral pathogenesis and immunity and comprising an effective platform for testing HCV entry inhibitors in vivo.

Journal ArticleDOI
30 Sep 2011-Cell
TL;DR: The first crystal structures of a G protein-gated K(+) channel are presented and a global conformational change is identified through which G proteins could open a G loop gate in the cytoplasmic domain, which would allow intracellular Na(+) to modulate GIRK channel activity.

Journal ArticleDOI
TL;DR: The neurobiological and organismal factors that modulate resilience, such as growth factors, chaperone molecules and circadian rhythms, are discussed, and its consequences for cognition and behavior are highlighted.

Journal ArticleDOI
19 Aug 2011-Science
TL;DR: Aneuploidy-induced genomic instability could facilitate the development of genetic alterations that drive malignant growth in cancer.
Abstract: Aneuploidy decreases cellular fitness, yet it is also associated with cancer, a disease of enhanced proliferative capacity. To investigate one mechanism by which aneuploidy could contribute to tumorigenesis, we examined the effects of aneuploidy on genomic stability. We analyzed 13 budding yeast strains that carry extra copies of single chromosomes and found that all aneuploid strains exhibited one or more forms of genomic instability. Most strains displayed increased chromosome loss and mitotic recombination, as well as defective DNA damage repair. Aneuploid fission yeast strains also exhibited defects in mitotic recombination. Aneuploidy-induced genomic instability could facilitate the development of genetic alterations that drive malignant growth in cancer.

Journal ArticleDOI
02 Dec 2011-Science
TL;DR: Structural analysis of an HIV antibody reveals residues important for neutralization breadth and potency, which indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.
Abstract: Antibodies against the CD4 binding site (CD4bs) on the HIV-1 spike protein gp120 can show exceptional potency and breadth. We determined structures of NIH45-46, a more potent clonal variant of VRC01, alone and bound to gp120. Comparisons with VRC01-gp120 revealed that a four-residue insertion in heavy chain complementarity–determining region 3 (CDRH3) contributed to increased interaction between NIH45-46 and the gp120 inner domain, which correlated with enhanced neutralization. We used structure-based design to create NIH45-46G54W, a single substitution in CDRH2 that increases contact with the gp120 bridging sheet and improves breadth and potency, critical properties for potential clinical use, by an order of magnitude. Together with the NIH45-46–gp120 structure, these results indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.

Journal ArticleDOI
TL;DR: It is shown that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia, and is suitable for therapeutic intervention in the setting of ischemic heart disease.
Abstract: Background—Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. Methods and Results—Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2–associated death promoter) and Sirtuin...

Journal ArticleDOI
TL;DR: Together, the results show that Twist1 needs to induce Snail2 to suppress the epithelial branch of the EMT program and that Twist2 and Twist1 act together to promote EMT and tumor metastasis.
Abstract: To metastasize, carcinoma cells must attenuate cell–cell adhesion to disseminate into distant organs. A group of transcription factors, including Twist1, Snail1, Snail2, ZEB1, and ZEB2, have been shown to induce epithelial mesenchymal transition (EMT), thus promoting tumor dissemination. However, it is unknown whether these transcription factors function independently or coordinately to activate the EMT program. Here we report that direct induction of Snail2 is essential for Twist1 to induce EMT. Snail2 knockdown completely blocks the ability of Twist1 to suppress E-cadherin transcription. Twist1 binds to an evolutionarily conserved E-box on the proximate Snail2 promoter to induce its transcription. Snail2 induction is essential for Twist1-induced cell invasion and distant metastasis in mice. In human breast tumors, the expression of Twist1 and Snail2 is highly correlated. Together, our results show that Twist1 needs to induce Snail2 to suppress the epithelial branch of the EMT program and that Twist1 and Snail2 act together to promote EMT and tumor metastasis. Cancer Res; 71(1); 245–54. ©2010 AACR.