scispace - formally typeset
Search or ask a question

Showing papers by "Rockefeller University published in 2020"


Journal ArticleDOI
Paul Bastard1, Paul Bastard2, Paul Bastard3, Lindsey B. Rosen4, Qian Zhang1, Eleftherios Michailidis1, Hans-Heinrich Hoffmann1, Yu Zhang4, Karim Dorgham3, Quentin Philippot3, Quentin Philippot2, Jérémie Rosain3, Jérémie Rosain2, Vivien Béziat1, Vivien Béziat2, Vivien Béziat3, Jeremy Manry2, Jeremy Manry3, Elana Shaw4, Liis Haljasmägi5, Pärt Peterson5, Lazaro Lorenzo2, Lazaro Lorenzo3, Lucy Bizien2, Lucy Bizien3, Sophie Trouillet-Assant6, Kerry Dobbs4, Adriana Almeida de Jesus4, Alexandre Belot6, Anne Kallaste7, Emilie Catherinot, Yacine Tandjaoui-Lambiotte2, Jérémie Le Pen1, Gaspard Kerner2, Gaspard Kerner3, Benedetta Bigio1, Yoann Seeleuthner2, Yoann Seeleuthner3, Rui Yang1, Alexandre Bolze, András N Spaan1, András N Spaan8, Ottavia M. Delmonte4, Michael S. Abers4, Alessandro Aiuti9, Giorgio Casari9, Vito Lampasona9, Lorenzo Piemonti9, Fabio Ciceri9, Kaya Bilguvar10, Richard P. Lifton1, Richard P. Lifton10, Marc Vasse, David M. Smadja3, Mélanie Migaud2, Mélanie Migaud3, Jérôme Hadjadj3, Benjamin Terrier3, Darragh Duffy11, Lluis Quintana-Murci11, Lluis Quintana-Murci12, Diederik van de Beek13, Lucie Roussel14, Donald C. Vinh14, Stuart G. Tangye15, Stuart G. Tangye16, Filomeen Haerynck17, David Dalmau18, Javier Martinez-Picado19, Javier Martinez-Picado20, Petter Brodin21, Petter Brodin22, Michel C. Nussenzweig23, Michel C. Nussenzweig1, Stéphanie Boisson-Dupuis3, Stéphanie Boisson-Dupuis1, Stéphanie Boisson-Dupuis2, Carlos Rodríguez-Gallego, Guillaume Vogt3, Trine H. Mogensen24, Trine H. Mogensen25, Andrew J. Oler4, Jingwen Gu4, Peter D. Burbelo4, Jeffrey I. Cohen4, Andrea Biondi26, Laura Rachele Bettini26, Mariella D'Angiò26, Paolo Bonfanti26, Patrick Rossignol27, Julien Mayaux3, Frédéric Rieux-Laucat3, Eystein S. Husebye28, Eystein S. Husebye29, Eystein S. Husebye30, Francesca Fusco, Matilde Valeria Ursini, Luisa Imberti31, Alessandra Sottini31, Simone Paghera31, Eugenia Quiros-Roldan32, Camillo Rossi, Riccardo Castagnoli33, Daniela Montagna33, Amelia Licari33, Gian Luigi Marseglia33, Xavier Duval, Jade Ghosn3, Hgid Lab4, Covid Clinicians5, Covid-Storm Clinicians§4, CoV-Contact Cohort§3, Amsterdam Umc Covid Biobank3, Amsterdam Umc Covid Biobank2, Amsterdam Umc Covid Biobank1, Covid Human Genetic Effort1, John S. Tsang4, Raphaela Goldbach-Mansky4, Kai Kisand5, Michail S. Lionakis4, Anne Puel1, Anne Puel3, Anne Puel2, Shen-Ying Zhang1, Shen-Ying Zhang2, Shen-Ying Zhang3, Steven M. Holland4, Guy Gorochov3, Emmanuelle Jouanguy3, Emmanuelle Jouanguy1, Emmanuelle Jouanguy2, Charles M. Rice1, Aurélie Cobat2, Aurélie Cobat1, Aurélie Cobat3, Luigi D. Notarangelo4, Laurent Abel2, Laurent Abel3, Laurent Abel1, Helen C. Su4, Jean-Laurent Casanova 
23 Oct 2020-Science
TL;DR: A means by which individuals at highest risk of life-threatening COVID-19 can be identified is identified, and the hypothesis that neutralizing auto-Abs against type I IFNs may underlie critical CO VID-19 is tested.
Abstract: Interindividual clinical variability in the course of SARS-CoV-2 infection is immense. We report that at least 101 of 987 patients with life-threatening COVID-19 pneumonia had neutralizing IgG auto-Abs against IFN-ω (13 patients), the 13 types of IFN-α (36), or both (52), at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1,227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 were men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.

1,913 citations


Journal ArticleDOI
18 Jun 2020-Nature
TL;DR: Most convalescent plasma samples obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity, and rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.
Abstract: During the COVID-19 pandemic, SARS-CoV-2 infected millions of people and claimed hundreds of thousands of lives Virus entry into cells depends on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S) Although there is no vaccine, it is likely that antibodies will be essential for protection However, little is known about the human antibody response to SARS-CoV-21-5 Here we report on 149 COVID-19 convalescent individuals Plasmas collected an average of 39 days after the onset of symptoms had variable half-maximal pseudovirus neutralizing titres: less than 1:50 in 33% and below 1:1,000 in 79%, while only 1% showed titres above 1:5,000 Antibody sequencing revealed expanded clones of RBD-specific memory B cells expressing closely related antibodies in different individuals Despite low plasma titres, antibodies to three distinct epitopes on RBD neutralized at half-maximal inhibitory concentrations (IC50 values) as low as single digit nanograms per millitre Thus, most convalescent plasmas obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective

1,675 citations


Journal ArticleDOI
Qian Zhang1, Paul Bastard2, Paul Bastard3, Zhiyong Liu1  +169 moreInstitutions (34)
23 Oct 2020-Science
TL;DR: The COVID Human Genetic Effort established to test the general hypothesis that life-threatening COVID-19 in some or most patients may be caused by monogenic inborn errors of immunity to SARS-CoV-2 with incomplete or complete penetrance finds an enrichment in variants predicted to be loss-of-function (pLOF), with a minor allele frequency <0.001.
Abstract: Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.

1,659 citations


Journal ArticleDOI
27 Jul 2020-Nature
TL;DR: A longitudinal analysis of immune responses in patients with moderate or severe COVID-19 identifies a maladapted immune response profile linked to severe disease, as well as early immune signatures that correlate with divergent disease trajectories.
Abstract: Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19)1-4. However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories.

1,572 citations


Journal ArticleDOI
12 Oct 2020-Nature
TL;DR: Eight new structures of distinct COVID-19 human neutralizing antibodies 5 in complex with the SARS-CoV-2 spike trimer or RBD are solved and rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects and suggesting combinations for clinical use are provided.
Abstract: The coronavirus disease 2019 (COVID-19) pandemic presents an urgent health crisis. Human neutralizing antibodies that target the host ACE2 receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein1–5 show promise therapeutically and are being evaluated clinically6–8. Here, to identify the structural correlates of SARS-CoV-2 neutralization, we solved eight new structures of distinct COVID-19 human neutralizing antibodies5 in complex with the SARS-CoV-2 spike trimer or RBD. Structural comparisons allowed us to classify the antibodies into categories: (1) neutralizing antibodies encoded by the VH3-53 gene segment with short CDRH3 loops that block ACE2 and bind only to ‘up’ RBDs; (2) ACE2-blocking neutralizing antibodies that bind both up and ‘down’ RBDs and can contact adjacent RBDs; (3) neutralizing antibodies that bind outside the ACE2 site and recognize both up and down RBDs; and (4) previously described antibodies that do not block ACE2 and bind only to up RBDs9. Class 2 contained four neutralizing antibodies with epitopes that bridged RBDs, including a VH3-53 antibody that used a long CDRH3 with a hydrophobic tip to bridge between adjacent down RBDs, thereby locking the spike into a closed conformation. Epitope and paratope mapping revealed few interactions with host-derived N-glycans and minor contributions of antibody somatic hypermutations to epitope contacts. Affinity measurements and mapping of naturally occurring and in vitro-selected spike mutants in 3D provided insight into the potential for SARS-CoV-2 to escape from antibodies elicited during infection or delivered therapeutically. These classifications and structural analyses provide rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects and suggesting combinations for clinical use, and provide insight into immune responses against SARS-CoV-2. Eight structures of human neutralizing antibodies that target the SARS-CoV-2 spike receptor-binding domain are reported and classified into four categories, suggesting combinations for clinical use.

1,169 citations


Journal ArticleDOI
28 Oct 2020-eLife
TL;DR: It is shown that functional SARS-CoV-2 S protein variants with mutations in the receptor-binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected.
Abstract: Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor-binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.

1,164 citations


Journal ArticleDOI
TL;DR: A group of leaders in the field define ‘trained immunity’ as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity.
Abstract: Immune memory is a defining feature of the acquired immune system, but activation of the innate immune system can also result in enhanced responsiveness to subsequent triggers. This process has been termed 'trained immunity', a de facto innate immune memory. Research in the past decade has pointed to the broad benefits of trained immunity for host defence but has also suggested potentially detrimental outcomes in immune-mediated and chronic inflammatory diseases. Here we define 'trained immunity' as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity.

1,116 citations


Journal ArticleDOI
TL;DR: This report documents the key clinical and laboratory features of 430 inborn errors of immunity, including 64 gene defects that have either been discovered in the past 2 years since the previous update (published January 2018) or were characterized earlier but have since been confirmed or expanded upon in subsequent studies.
Abstract: We report the updated classification of Inborn Errors of Immunity/Primary Immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 430 inborn errors of immunity, including 64 gene defects that have either been discovered in the past 2 years since the previous update (published January 2018) or were characterized earlier but have since been confirmed or expanded upon in subsequent studies. The application of next-generation sequencing continues to expedite the rapid identification of novel gene defects, rare or common; broaden the immunological and clinical phenotypes of conditions arising from known gene defects and even known variants; and implement gene-specific therapies. These advances are contributing to greater understanding of the molecular, cellular, and immunological mechanisms of disease, thereby enhancing immunological knowledge while improving the management of patients and their families. This report serves as a valuable resource for the molecular diagnosis of individuals with heritable immunological disorders and also for the scientific dissection of cellular and molecular mechanisms underlying inborn errors of immunity and related human diseases.

825 citations



Posted ContentDOI
Arang Rhie1, Shane A. McCarthy2, Olivier Fedrigo3, Joana Damas4, Giulio Formenti3, Sergey Koren1, Marcela Uliano-Silva2, William Chow2, Arkarachai Fungtammasan, Gregory Gedman3, Lindsey J. Cantin3, Françoise Thibaud-Nissen1, Leanne Haggerty5, Chul Hee Lee6, Byung June Ko6, J. H. Kim6, Iliana Bista2, Michelle Smith2, Bettina Haase3, Jacquelyn Mountcastle3, Sylke Winkler7, Sadye Paez3, Jason T. Howard8, Sonja C. Vernes7, Tanya M. Lama9, Frank Grützner10, Wesley C. Warren11, Christopher N. Balakrishnan12, Dave W Burt13, Jimin George14, Matthew T. Biegler3, David Iorns15, Andrew Digby, Daryl Eason, Taylor Edwards16, Mark Wilkinson17, George F. Turner18, Axel Meyer19, Andreas F. Kautt19, Paolo Franchini19, H. William Detrich20, Hannes Svardal21, Maximilian Wagner22, Gavin J. P. Naylor23, Martin Pippel7, Milan Malinsky2, Mark Mooney, Maria Simbirsky, Brett T. Hannigan, Trevor Pesout24, Marlys L. Houck, Ann C Misuraca, Sarah B. Kingan25, Richard Hall25, Zev N. Kronenberg25, Jonas Korlach25, Ivan Sović25, Christopher Dunn25, Zemin Ning2, Alex Hastie, Joyce V. Lee, Siddarth Selvaraj, Richard E. Green24, Nicholas H. Putnam, Jay Ghurye26, Erik Garrison24, Ying Sims2, Joanna Collins2, Sarah Pelan2, James Torrance2, Alan Tracey2, Jonathan Wood2, Dengfeng Guan27, Sarah E. London28, David F. Clayton14, Claudio V. Mello29, Samantha R. Friedrich29, Peter V. Lovell29, Ekaterina Osipova7, Farooq O. Al-Ajli30, Simona Secomandi31, Heebal Kim6, Constantina Theofanopoulou3, Yang Zhou32, Robert S. Harris33, Kateryna D. Makova33, Paul Medvedev33, Jinna Hoffman1, Patrick Masterson1, Karen Clark1, Fergal J. Martin5, Kevin L. Howe5, Paul Flicek5, Brian P. Walenz1, Woori Kwak, Hiram Clawson24, Mark Diekhans24, Luis R Nassar24, Benedict Paten24, Robert H. S. Kraus19, Harris A. Lewin4, Andrew J. Crawford34, M. Thomas P. Gilbert32, Guojie Zhang32, Byrappa Venkatesh35, Robert W. Murphy36, Klaus-Peter Koepfli37, Beth Shapiro24, Warren E. Johnson37, Federica Di Palma38, Tomas Marques-Bonet39, Emma C. Teeling40, Tandy Warnow41, Jennifer A. Marshall Graves42, Oliver A. Ryder43, David Haussler24, Stephen J. O'Brien44, Kerstin Howe2, Eugene W. Myers45, Richard Durbin2, Adam M. Phillippy1, Erich D. Jarvis3 
23 May 2020-bioRxiv
TL;DR: The Vertebrate Genomes Project is embarked on, an effort to generate high-quality, complete reference genomes for all ~70,000 extant vertebrate species and help enable a new era of discovery across the life sciences.
Abstract: High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are only available for a few non-microbial species. To address this issue, the international Genome 10K (G10K) consortium has worked over a five-year period to evaluate and develop cost-effective methods for assembling the most accurate and complete reference genomes to date. Here we summarize these developments, introduce a set of quality standards, and present lessons learned from sequencing and assembling 16 species representing major vertebrate lineages (mammals, birds, reptiles, amphibians, teleost fishes and cartilaginous fishes). We confirm that long-read sequencing technologies are essential for maximizing genome quality and that unresolved complex repeats and haplotype heterozygosity are major sources of error in assemblies. Our new assemblies identify and correct substantial errors in some of the best historical reference genomes. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an effort to generate high-quality, complete reference genomes for all ~70,000 extant vertebrate species and help enable a new era of discovery across the life sciences.

567 citations


Journal ArticleDOI
Ayuko Hoshino1, Ayuko Hoshino2, Han Sang Kim3, Han Sang Kim1, Linda Bojmar4, Linda Bojmar5, Linda Bojmar1, Kofi Ennu Gyan1, Michele Cioffi1, Jonathan M. Hernandez6, Jonathan M. Hernandez7, Jonathan M. Hernandez1, Constantinos P. Zambirinis6, Constantinos P. Zambirinis1, Gonçalo Rodrigues8, Gonçalo Rodrigues1, Henrik Molina9, Søren Heissel9, Milica Tesic Mark9, Loïc Steiner10, Loïc Steiner1, Alberto Benito-Martin1, Serena Lucotti1, Angela Di Giannatale1, Katharine Offer1, Miho Nakajima1, Caitlin Williams1, Laura Nogués11, Laura Nogués1, Fanny A. Pelissier Vatter1, Ayako Hashimoto1, Ayako Hashimoto2, Ayako Hashimoto12, Alexander E. Davies13, Daniela Freitas1, Daniela Freitas8, Candia M. Kenific1, Yonathan Ararso1, Weston Buehring1, Pernille Lauritzen1, Yusuke Ogitani1, Kei Sugiura2, Kei Sugiura12, Naoko Takahashi2, Maša Alečković14, Kayleen A. Bailey1, Joshua S. Jolissant6, Joshua S. Jolissant1, Huajuan Wang1, Ashton Harris1, L. Miles Schaeffer1, Guillermo García-Santos1, Guillermo García-Santos15, Zoe Posner1, Vinod P. Balachandran6, Yasmin Khakoo6, G. Praveen Raju16, Avigdor Scherz17, Irit Sagi17, Ruth Scherz-Shouval17, Yosef Yarden17, Moshe Oren17, Mahathi Malladi6, Mary Petriccione6, Kevin C. De Braganca6, Maria Donzelli6, Cheryl Fischer6, Stephanie Vitolano6, Geraldine P. Wright6, Lee Ganshaw6, Mariel Marrano6, Amina Ahmed6, Joe DeStefano6, Enrico Danzer6, Michael H.A. Roehrl6, Norman J. Lacayo18, Theresa C. Vincent19, Theresa C. Vincent5, Martin R. Weiser6, Mary S. Brady6, Paul A. Meyers6, Leonard H. Wexler6, Srikanth R. Ambati6, Alexander J. Chou6, Emily K. Slotkin6, Shakeel Modak6, Stephen S. Roberts6, Ellen M. Basu6, Daniel Diolaiti19, Benjamin A. Krantz6, Benjamin A. Krantz19, Fatima Cardoso20, Amber L. Simpson6, Michael F. Berger6, Charles M. Rudin6, Diane M. Simeone19, Maneesh Jain21, Cyrus M. Ghajar22, Surinder K. Batra21, Ben Z. Stanger23, Jack D. Bui24, Kristy A. Brown1, Vinagolu K. Rajasekhar6, John H. Healey6, Maria de Sousa1, Maria de Sousa8, Kim Kramer6, Sujit Sheth1, Jeanine Baisch1, Virginia Pascual1, Todd E. Heaton6, Michael P. La Quaglia6, David J. Pisapia1, Robert E. Schwartz1, Haiying Zhang1, Yuan Liu6, Arti Shukla25, Laurence Blavier26, Yves A. DeClerck26, Mark A. LaBarge27, Mina J. Bissell28, Thomas C. Caffrey21, Paul M. Grandgenett21, Michael A. Hollingsworth21, Jacqueline Bromberg6, Jacqueline Bromberg1, Bruno Costa-Silva20, Héctor Peinado11, Yibin Kang14, Benjamin A. Garcia23, Eileen M. O'Reilly6, David P. Kelsen6, Tanya M. Trippett6, David R. Jones6, Irina Matei1, William R. Jarnagin6, David Lyden1 
20 Aug 2020-Cell
TL;DR: EVP proteins can serve as reliable biomarkers for cancer detection and determining cancer type, and a panel of tumor-type-specific EVP proteins in TEs and plasma are defined, which can classify tumors of unknown primary origin.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.
Abstract: To accommodate daily recurring environmental changes, animals show cyclic variations in behaviour and physiology, which include prominent behavioural states such as sleep-wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously by genetically encoded molecular clocks, whose components cooperate to generate cyclic changes in their own abundance and activity, with a periodicity of about a day. Throughout the body, such molecular clocks convey temporal control to the function of organs and tissues by regulating pertinent downstream programmes. Synchrony between the different circadian oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which is directly responsive to certain environmental cues and able to transmit internal time-of-day representations to the entire body. In this Review, we discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.

Journal ArticleDOI
TL;DR: Pseudotyped HIV-1– and vesicular stomatitis virus–based reporter viruses and a replication-competent vesicle stom atitis virus/SARS-CoV-2 chimera represent useful tools to assess neutralizing antibodies.
Abstract: The emergence of SARS-CoV-2 and the ensuing explosive epidemic of COVID-19 disease has generated a need for assays to rapidly and conveniently measure the antiviral activity of SARS-CoV-2-specific antibodies. Here, we describe a collection of approaches based on SARS-CoV-2 spike-pseudotyped, single-cycle, replication-defective human immunodeficiency virus type-1 (HIV-1), and vesicular stomatitis virus (VSV), as well as a replication-competent VSV/SARS-CoV-2 chimeric virus. While each surrogate virus exhibited subtle differences in the sensitivity with which neutralizing activity was detected, the neutralizing activity of both convalescent plasma and human monoclonal antibodies measured using each virus correlated quantitatively with neutralizing activity measured using an authentic SARS-CoV-2 neutralization assay. The assays described herein are adaptable to high throughput and are useful tools in the evaluation of serologic immunity conferred by vaccination or prior SARS-CoV-2 infection, as well as the potency of convalescent plasma or human monoclonal antibodies.

Posted ContentDOI
22 Jul 2020-bioRxiv
TL;DR: It is shown that functional SARS-CoV-2 S protein variants with mutations in the receptor binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected.
Abstract: Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.

Journal ArticleDOI
17 Sep 2020-Cell
TL;DR: Cryo-electron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template-product in complex with two molecules of the nsp13 helicase are presented, detailing a new pocket for anti-viral therapeutic development.


Journal ArticleDOI
TL;DR: The history of the ADE phenomenon is explored, the diversity of immune responses mediated upon FcγR engagement is discussed and the available experimental evidence supporting the role of F cγRs in antiviral protection and pathogenesis through ADE is reviewed.
Abstract: Antibody-dependent enhancement (ADE) is a mechanism by which the pathogenesis of certain viral infections is enhanced in the presence of sub-neutralizing or cross-reactive non-neutralizing antiviral antibodies. In vitro modelling of ADE has attributed enhanced pathogenesis to Fcγ receptor (FcγR)-mediated viral entry, rather than canonical viral receptor-mediated entry. However, the putative FcγR-dependent mechanisms of ADE overlap with the role of these receptors in mediating antiviral protection in various viral infections, necessitating a detailed understanding of how this diverse family of receptors functions in protection and pathogenesis. Here, we discuss the diversity of immune responses mediated upon FcγR engagement and review the available experimental evidence supporting the role of FcγRs in antiviral protection and pathogenesis through ADE. We explore FcγR engagement in the context of a range of different viral infections, including dengue virus and SARS-CoV, and consider ADE in the context of the ongoing SARS-CoV-2 pandemic.

Journal ArticleDOI
TL;DR: The story began with the discovery of glucocorticoid receptors in hippocampus and has extended to other brain regions in both animal models and the human brain with the further discovery of structural and functional adaptive plasticity in response to stressful and other experiences.
Abstract: Over the last 50 years, the concept of stress has evolved significantly, and our understanding of the underlying neurobiology has expanded dramatically. Rather than consider stress biology to be relevant only under unusual and threatening conditions, we conceive of it as an ongoing, adaptive process of assessing the environment, coping with it, and enabling the individual to anticipate and deal with future challenges. Though much remains to be discovered, the fundamental neurocircuitry that underlies these processes has been broadly delineated, key molecular players have been identified, and the impact of this system on neuroplasticity has been well established. More recently, we have come to appreciate the critical interaction between the brain and the rest of the body as it pertains to stress responsiveness. Importantly, this system can become overloaded due to ongoing environmental demands on the individual, be they physical, physiological, or psychosocial. The impact of this overload is deleterious to brain health, and it results in vulnerability to a range of brain disorders, including major depression and cognitive deficits. Thus, stress biology is one of the best understood systems in affective neuroscience and is an ideal target for addressing the pathophysiology of many brain-related diseases. The story we present began with the discovery of glucocorticoid receptors in hippocampus and has extended to other brain regions in both animal models and the human brain with the further discovery of structural and functional adaptive plasticity in response to stressful and other experiences.

Journal ArticleDOI
TL;DR: The findings appear to support the use of dupilumab for the treatment of adolescents with moderate to severe atopic dermatitis.
Abstract: Importance Adolescents with atopic dermatitis (AD) have high disease burden negatively affecting quality of life, with limited treatment options. The efficacy and safety of dupilumab, a monoclonal antibody, approved for treatment in adolescent patients with inadequately controlled AD, remain unknown in this patient population. Objective To assess the efficacy and safety of dupilumab monotherapy in adolescents with moderate to severe inadequately controlled AD. Design, Setting, and Participants A randomized, double-blind, parallel-group, phase 3 clinical trial was conducted at 45 US and Canadian centers between March 21, 2017, and June 5, 2018. A total of 251 adolescents with moderate to severe AD inadequately controlled by topical medications or for whom topical therapy was inadvisable were included. Interventions Patients were randomized (1:1:1; interactive-response system; stratified by severity and body weight) to 16-week treatment with dupilumab, 200 mg (n = 43; baseline weight Main Outcomes and Measures Proportion of patients with 75% or more improvement from baseline in Eczema Area and Severity Index (EASI-75) (scores range from 0 to 72, with higher scores indicating greater severity) and Investigator’s Global Assessment (IGA) 0 or 1 on a 5-point scale (scores range from 0 to 4, with higher scores indicating greater severity) at week 16. Results A total of 251 patients were randomized (mean [SD] age, 14.5 [1.7] years; 148 [59.0%] male). Of 250 patients with data available on concurrent allergic conditions, most had comorbid type 2 diseases (asthma, 134 [53.6%]; food allergies, 60.8%; allergic rhinitis, 65.6%). A total of 240 patients (95.6%) completed the study. Dupilumab achieved both coprimary end points at week 16. The proportion of patients with EASI-75 improvement from baseline increased (every 2 weeks, 41.5%; every 4 weeks, 38.1%; placebo, 8.2%) with differences vs placebo of 33.2% (95% CI, 21.1%-45.4%) for every 2 weeks and 29.9% (95% CI, 17.9%-41.8%) for every 4 weeks (P Conclusions and Relevance In this study, dupilumab significantly improved AD signs, symptoms, and quality of life in adolescents with moderate to severe AD, with an acceptable safety profile. Placebo-corrected efficacy and safety of dupilumab were similar in adolescents and adults. Trial Registration ClinicalTrials.gov identifier:NCT03054428

Journal ArticleDOI
TL;DR: This work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation, and identifies tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition.
Abstract: Cancer cells rewire their metabolism and rely on endogenous antioxidants to mitigate lethal oxidative damage to lipids. However, the metabolic processes that modulate the response to lipid peroxidation are poorly defined. Using genetic screens, we compared metabolic genes essential for proliferation upon inhibition of cystine uptake or glutathione peroxidase-4 (GPX4). Interestingly, very few genes were commonly required under both conditions, suggesting that cystine limitation and GPX4 inhibition may impair proliferation via distinct mechanisms. Our screens also identify tetrahydrobiopterin (BH4) biosynthesis as an essential metabolic pathway upon GPX4 inhibition. Mechanistically, BH4 is a potent radical-trapping antioxidant that protects lipid membranes from autoxidation, alone and in synergy with vitamin E. Dihydrofolate reductase catalyzes the regeneration of BH4, and its inhibition by methotrexate synergizes with GPX4 inhibition. Altogether, our work identifies the mechanism by which BH4 acts as an endogenous antioxidant and provides a compendium of metabolic modifiers of lipid peroxidation.

Journal ArticleDOI
01 Jul 2020-Allergy
TL;DR: The present review aims to highlight recent advances in type 2 immunity and discuss the cellular sources, targets, and roles of type 2 mechanisms in asthma and AD.
Abstract: There has been extensive progress in understanding the cellular and molecular mechanisms of inflammation and immune regulation in allergic diseases of the skin and lungs during the last few years. Asthma and atopic dermatitis (AD) are typical diseases of type 2 immune responses. interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin are essential cytokines of epithelial cells that are activated by allergens, pollutants, viruses, bacteria, and toxins that derive type 2 responses. Th2 cells and innate lymphoid cells (ILC) produce and secrete type 2 cytokines such as IL-4, IL-5, IL-9, and IL-13. IL-4 and IL-13 activate B cells to class-switch to IgE and also play a role in T-cell and eosinophil migration to allergic inflammatory tissues. IL-13 contributes to maturation, activation, nitric oxide production and differentiation of epithelia, production of mucus as well as smooth muscle contraction, and extracellular matrix generation. IL-4 and IL-13 open tight junction barrier and cause barrier leakiness in the skin and lungs. IL-5 acts on activation, recruitment, and survival of eosinophils. IL-9 contributes to general allergic phenotype by enhancing all of the aspects, such as IgE and eosinophilia. Type 2 ILC contribute to inflammation in AD and asthma by enhancing the activity of Th2 cells, eosinophils, and their cytokines. Currently, five biologics are licensed to suppress type 2 inflammation via IgE, IL-5 and its receptor, and IL-4 receptor alpha. Some patients with severe atopic disease have little evidence of type 2 hyperactivity and do not respond to biologics which target this pathway. Studies in responder and nonresponder patients demonstrate the complexity of these diseases. In addition, primary immune deficiency diseases related to T-cell maturation, regulatory T-cell development, and T-cell signaling, such as Omenn syndrome, severe combined immune deficiencies, immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, and DOCK8, STAT3, and CARD11 deficiencies, help in our understanding of the importance and redundancy of various type 2 immune components. The present review aims to highlight recent advances in type 2 immunity and discuss the cellular sources, targets, and roles of type 2 mechanisms in asthma and AD.

Journal ArticleDOI
TL;DR: Human primary lung adenocarcinomas are characterized by the emergence of regenerative cell types, typically seen in response to lung injury, and by striking infidelity among transcription factors specifying most alveolar and bronchial epithelial lineages.
Abstract: Developmental processes underlying normal tissue regeneration have been implicated in cancer, but the degree of their enactment during tumor progression and under the selective pressures of immune surveillance, remain unknown. Here we show that human primary lung adenocarcinomas are characterized by the emergence of regenerative cell types, typically seen in response to lung injury, and by striking infidelity among transcription factors specifying most alveolar and bronchial epithelial lineages. In contrast, metastases are enriched for key endoderm and lung-specifying transcription factors, SOX2 and SOX9, and recapitulate more primitive transcriptional programs spanning stem-like to regenerative pulmonary epithelial progenitor states. This developmental continuum mirrors the progressive stages of spontaneous outbreak from metastatic dormancy in a mouse model and exhibits SOX9-dependent resistance to natural killer cells. Loss of developmental stage-specific constraint in macrometastases triggered by natural killer cell depletion suggests a dynamic interplay between developmental plasticity and immune-mediated pruning during metastasis. Single-cell analysis of lung cancer progression uncovers developmental and regenerative programs co-opted by cancer cells and immune-mediated pruning during metastatic outbreak

Posted ContentDOI
09 Jun 2020-bioRxiv
TL;DR: A collection of approaches based on SARS-CoV-2 spike-pseudotyped, single-cycle, replication-defective human immunodeficiency virus type-1 (HIV-1) and vesicular stomatitis virus (VSV), as well as a replication-competent VSV/SARS- CoV- 2 chimeric virus are described.
Abstract: The emergence of SARS-CoV-2 and the ensuing explosive epidemic of COVID19 disease has generated a need for assays to rapidly and conveniently measure the antiviral activity of SARSCoV-2-specific antibodies. Here, we describe a collection of approaches based on SARS-CoV-2 spike-pseudotyped, single-cycle, replication-defective human immunodeficiency virus type-1 (HIV-1) and vesicular stomatitis virus (VSV), as well as a replication-competent VSV/SARS-CoV-2 chimeric virus. While each surrogate virus exhibited subtle differences in the sensitivity with which neutralizing activity was detected, the neutralizing activity of both convalescent plasma and human monoclonal antibodies measured using each virus correlated quantitatively with neutralizing activity measured using an authentic SARS-CoV-2 neutralization assay. The assays described herein are adaptable to high throughput and are useful tools in the evaluation of serologic immunity conferred by vaccination or prior SARS-CoV-2 infection, as well as the potency of convalescent plasma or human monoclonal antibodies.

Journal ArticleDOI
TL;DR: AD lesions were characterized by expanded type 2/type 22 T-cells and inflammatory DCs, and a unique inflammatory fibroblast that may interact with immune cells to regulate lymphoid cell organization and type 2 inflammation.
Abstract: Background Atopic dermatitis (AD) is a prevalent inflammatory skin disease with a complex pathogenesis involving immune cell and epidermal abnormalities. Despite whole tissue biopsy studies that have advanced the mechanistic understanding of AD, single cell–based molecular alterations are largely unknown. Objective Our aims were to construct a detailed, high-resolution atlas of cell populations and assess variability in cell composition and cell-specific gene expression in the skin of patients with AD versus in controls. Methods We performed single-cell RNA sequencing on skin biopsy specimens from 5 patients with AD (4 lesional samples and 5 nonlesional samples) and 7 healthy control subjects, using 10× Genomics. Results We created transcriptomic profiles for 39,042 AD (lesional and nonlesional) and healthy skin cells. Fibroblasts demonstrated a novel COL6A5+COL18A1+ subpopulation that was unique to lesional AD and expressed CCL2 and CCL19 cytokines. A corresponding LAMP3+ dendritic cell (DC) population that expressed the CCL19 receptor CCR7 was also unique to AD lesions, illustrating a potential role for fibroblast signaling to immune cells. The lesional AD samples were characterized by expansion of inflammatory DCs (CD1A+FCER1A+) and tissue-resident memory T cells (CD69+CD103+). The frequencies of type 2 (IL13+)/type 22 (IL22+) T cells were higher than those of type 1 (IFNG+) in lesional AD, whereas this ratio was slightly diminished in nonlesional AD and further diminished in controls. Conclusion AD lesions were characterized by expanded type 2/type 22 T cells and inflammatory DCs, and by a unique inflammatory fibroblast that may interact with immune cells to regulate lymphoid cell organization and type 2 inflammation.

Journal ArticleDOI
Shaohong Feng1, Josefin Stiller2, Yuan Deng2, Joel Armstrong3  +166 moreInstitutions (77)
12 Nov 2020-Nature
TL;DR: The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA.
Abstract: Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.

Journal ArticleDOI
09 Jan 2020-Cell
TL;DR: It is found that secondary responses are characterized by a clonality bottleneck that restricts the engagement of the large diversity of MBC clones generated by priming, and understanding how to counter this bottleneck may improve the ability to elicit antibodies to non-immunodominant epitopes by vaccination.

Journal ArticleDOI
02 Sep 2020-Nature
TL;DR: Multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types are used to show that continuous chromosomal instability results in pervasive SCNA heterogeneity.
Abstract: Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.

Journal ArticleDOI
11 Nov 2020-Nature
TL;DR: Progressive Cactus as discussed by the authors is a reference-free multiple genome alignment program that enables the alignment of tens to thousands of large vertebrate genomes while maintaining high alignment quality, which is the largest multiple vertebrate genome alignment created so far.
Abstract: New genome assemblies have been arriving at a rapidly increasing pace, thanks to decreases in sequencing costs and improvements in third-generation sequencing technologies1-3. For example, the number of vertebrate genome assemblies currently in the NCBI (National Center for Biotechnology Information) database4 increased by more than 50% to 1,485 assemblies in the year from July 2018 to July 2019. In addition to this influx of assemblies from different species, new human de novo assemblies5 are being produced, which enable the analysis of not only small polymorphisms, but also complex, large-scale structural differences between human individuals and haplotypes. This coming era and its unprecedented amount of data offer the opportunity to uncover many insights into genome evolution but also present challenges in how to adapt current analysis methods to meet the increased scale. Cactus6, a reference-free multiple genome alignment program, has been shown to be highly accurate, but the existing implementation scales poorly with increasing numbers of genomes, and struggles in regions of highly duplicated sequences. Here we describe progressive extensions to Cactus to create Progressive Cactus, which enables the reference-free alignment of tens to thousands of large vertebrate genomes while maintaining high alignment quality. We describe results from an alignment of more than 600 amniote genomes, which is to our knowledge the largest multiple vertebrate genome alignment created so far.

Journal ArticleDOI
16 Jul 2020-Nature
TL;DR: It is found that the gut microbiome modulates gut-extrinsic sympathetic neurons: microbiota depletion leads to increased expression of the neuronal transcription factor cFos, and colonization of germ-free mice with bacteria that produce short-chain fatty acids suppresses cFOS expression in the gut sympathetic ganglia.
Abstract: Connections between the gut and brain monitor the intestinal tissue and its microbial and dietary content1, regulating both physiological intestinal functions such as nutrient absorption and motility2,3, and brain-wired feeding behaviour2. It is therefore plausible that circuits exist to detect gut microorganisms and relay this information to areas of the central nervous system that, in turn, regulate gut physiology4. Here we characterize the influence of the microbiota on enteric-associated neurons by combining gnotobiotic mouse models with transcriptomics, circuit-tracing methods and functional manipulations. We find that the gut microbiome modulates gut-extrinsic sympathetic neurons: microbiota depletion leads to increased expression of the neuronal transcription factor cFos, and colonization of germ-free mice with bacteria that produce short-chain fatty acids suppresses cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling and anterograde tracing identify a subset of distal intestine-projecting vagal neurons that are positioned to have an afferent role in microbiota-mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identifies brainstem sensory nuclei that are activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota-dependent control of gut-extrinsic sympathetic activation through a gut–brain circuit. A combination of gnotobiotic mouse models, transcriptomics, circuit tracing and chemogenetic manipulations identifies neuronal circuits that integrate microbial signals in the gut with regulation of the sympathetic nervous system.

Journal ArticleDOI
03 Dec 2020-Nature
TL;DR: The levels of 1,251 metabolites are measured in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals, and machine-learning algorithms reveal that diet and the microbiome are the determinants with the strongest predictive power for the levels of these metabolites.
Abstract: The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites—in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites. The levels of 1,251 metabolites are measured in 475 phenotyped individuals, and machine-learning algorithms reveal that diet and the microbiome are the determinants with the strongest predictive power for the levels of these metabolites.