scispace - formally typeset
Search or ask a question
Institution

Rockefeller University

EducationNew York, New York, United States
About: Rockefeller University is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Gene. The organization has 15867 authors who have published 32938 publications receiving 2940261 citations. The organization is also known as: Rockefeller University & Rockefeller Institute.
Topics: Population, Gene, Virus, Antigen, Receptor


Papers
More filters
Journal ArticleDOI
TL;DR: In this review, the development of this technology is discussed, its broad application to biological systems, and its possible role in the area of proteomics are discussed.
Abstract: ▪ Abstract Expressed protein ligation (EPL) is a protein engineering approach that allows recombinant and synthetic polypeptides to be chemoselectively and regioselectively joined together. The approach makes the primary structure of most proteins accessible to the tools of synthetic organic chemistry, enabling the covalent structure of proteins to be modified in an unprecedented fashion. The ability to incorporate noncoded amino acids, biophysical probes, and stable isotopes into specific locations within proteins provides research tools to peer into the inner workings of these molecules. In this review I discuss the development of this technology, its broad application to biological systems, and its possible role in the area of proteomics.

669 citations

Journal ArticleDOI
TL;DR: It is found that the innate monocyte network depletes B cells through FcγR-dependent pathways during anti-CD20 immunotherapy has important clinical implications for anti- CD20 and other antibody-based therapies.
Abstract: Anti-CD20 antibody immunotherapy effectively treats non-Hodgkin9s lymphoma and autoimmune disease. However, the cellular and molecular pathways for B cell depletion remain undefined because human mechanistic studies are limited. Proposed mechanisms include antibody-, effector cell–, and complement-dependent cytotoxicity, the disruption of CD20 signaling pathways, and the induction of apoptosis. To identify the mechanisms for B cell depletion in vivo, a new mouse model for anti-CD20 immunotherapy was developed using a panel of twelve mouse anti–mouse CD20 monoclonal antibodies representing all four immunoglobulin G isotypes. Anti-CD20 antibodies rapidly depleted the vast majority of circulating and tissue B cells in an isotype-restricted manner that was completely dependent on effector cell Fc receptor expression. B cell depletion used both FcγRI- and FcγRIII-dependent pathways, whereas B cells were not eliminated in FcR common γ chain–deficient mice. Monocytes were the dominant effector cells for B cell depletion, with no demonstrable role for T or natural killer cells. Although most anti-CD20 antibodies activated complement in vitro, B cell depletion was completely effective in mice with genetic deficiencies in C3, C4, or C1q complement components. That the innate monocyte network depletes B cells through FcγR-dependent pathways during anti-CD20 immunotherapy has important clinical implications for anti-CD20 and other antibody-based therapies.

668 citations

Journal ArticleDOI
21 Mar 2014-Science
TL;DR: The resolution of the human sense of smell is determined by testing the capacity of humans to discriminate odor mixtures with varying numbers of shared components and it is calculated that humans can discriminate at least 1 trillion olfactory stimuli.
Abstract: Humans can discriminate several million different colors and almost half a million different tones, but the number of discriminable olfactory stimuli remains unknown. The lay and scientific literature typically claims that humans can discriminate 10,000 odors, but this number has never been empirically validated. We determined the resolution of the human sense of smell by testing the capacity of humans to discriminate odor mixtures with varying numbers of shared components. On the basis of the results of psychophysical testing, we calculated that humans can discriminate at least 1 trillion olfactory stimuli. This is far more than previous estimates of distinguishable olfactory stimuli. It demonstrates that the human olfactory system, with its hundreds of different olfactory receptors, far outperforms the other senses in the number of physically different stimuli it can discriminate.

667 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated intrapersonal sets of transcriptomes from non-lesional skin and acute and chronic lesions of 10 patients with AD through genomic, molecular, and cellular profiling.
Abstract: Background Atopic dermatitis (AD) is a common disease with an increasing prevalence. The primary pathogenesis of the disease is still elusive, resulting in the lack of specific treatments. AD is currently considered a biphasic disease, with T H 2 predominating in acute disease and a switch to T H 1 characterizing chronic disease. Elucidation of the molecular factors that participate in the onset of new lesions and maintenance of chronic disease is critical for the development of targeted therapeutics. Objectives We sought to characterize the mechanisms underlying the onset and maintenance of AD. Methods We investigated intrapersonal sets of transcriptomes from nonlesional skin and acute and chronic lesions of 10 patients with AD through genomic, molecular, and cellular profiling. Results Our study associated the onset of acute lesions with a striking increase in a subset of terminal differentiation proteins, specifically the cytokine-modulated S100A7, S100A8, and S100A9. Acute disease was also associated with significant increases in gene expression levels of major T H 22 and T H 2 cytokines and smaller increases in IL-17 levels. A lesser induction of T H 1-associated genes was detected in acute disease, although some were significantly upregulated in chronic disease. Further significant intensification of major T H 22 and T H 2 cytokines was observed between acute and chronic lesions. Conclusions Our data identified increased S100A7, S100A8, and S100A9 gene expression with AD initiation and concomitant activation of T H 2 and T H 22 cytokines. Our findings support a model of progressive activation of T H 2 and T H 22 immune axes from the acute to chronic phases, expanding the prevailing view of pathogenesis with important therapeutic implications.

667 citations

Journal ArticleDOI
TL;DR: It is concluded that Stat3 has a necessary role in v- src transformation and wild-type Stat3 enhances the transforming potential of v-src while three dominant negative Stat3 mutants inhibit v-srctransformation.
Abstract: Stat3 activation has been associated with cytokine-induced proliferation, anti-apoptosis, and transformation. Constitutively activated Stat3 has been found in many human tumors as well as v-abl- and v-src-transformed cell lines. Because of these correlations, we examined directly the relationship of activated Stat3 to cellular transformation and found that wild-type Stat3 enhances the transforming potential of v-src while three dominant negative Stat3 mutants inhibit v-src transformation. Stat3 wild-type or mutant proteins did not affect v-ras transformation. We conclude that Stat3 has a necessary role in v-src transformation.

667 citations


Authors

Showing all 15925 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Baltimore203876162955
Ronald M. Evans199708166722
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Scott M. Grundy187841231821
Jie Zhang1784857221720
Andrea Bocci1722402176461
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Zena Werb168473122629
Nahum Sonenberg167647104053
Michel C. Nussenzweig16551687665
Harvey F. Lodish165782101124
Dennis R. Burton16468390959
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

92% related

Yale University
220.6K papers, 12.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202284
2021873
2020792
2019716
2018767