scispace - formally typeset
Search or ask a question
Institution

Rockefeller University

EducationNew York, New York, United States
About: Rockefeller University is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Gene. The organization has 15867 authors who have published 32938 publications receiving 2940261 citations. The organization is also known as: Rockefeller University & Rockefeller Institute.
Topics: Population, Gene, Virus, Antigen, Receptor


Papers
More filters
Journal ArticleDOI
08 Dec 2011-Neuron
TL;DR: It is observed that optical stimulation of DA neurons in the ventral tegmental area of Th::Cre rats is sufficient to support vigorous intracranial self-stimulation (ICSS), extending the generalizability of optogenetics to traditionally non-genetically-tractable but vital animal models.

617 citations

Journal ArticleDOI
13 Feb 1997-Nature
TL;DR: It is shown that addition of the HIV-1 Nef protein, which is a high-affinity ligand for the Hck SH3 domain, to either the downregulated or activated form of Hck causes a large increase in Hck catalytic activity.
Abstract: The protein Hck is a member of the Src family of non-receptor tyrosine kinases which is preferentially expressed in haematopoietic cells of the myeloid and B-lymphoid lineages. Src kinases are inhibited by tyrosine-phosphorylation at a carboxy-terminal site. The SH2 domains of these enzymes play an essential role in this regulation by binding to the tyrosine-phosphorylated tail. The crystal structure of the downregulated form of Hck has been determined and reveals that the SH2 domain regulates enzymatic activity indirectly; intramolecular interactions between the SH3 and catalytic domains appear to stabilize an inactive form of the kinase. Here we compare the roles of the SH2 and SH3 domains in modulating the activity of Hck in an investigation of the C-terminally phosphorylated form of the enzyme. We show that addition of the HIV-1 Nef protein, which is a high-affinity ligand for the Hck SH3 domain, to either the downregulated or activated form of Hck causes a large increase in Hck catalytic activity. The intact SH3-binding motif in Nef is crucial for Hck activation. Our results indicate that binding of the Hck SH3 domain by Nef causes a more marked activation of the enzyme than does binding of the SH2 domain, suggesting a new mechanism for regulation of the activity of tyrosine kinases.

617 citations

Journal ArticleDOI
TL;DR: It is found that transient and stable expression of the talin actin-binding domain fused to the C-terminus of the green fluorescent protein (GFP-mTn) can visualize the actin cytoskeleton in different types of living plant cells without affecting cell morphology or function.
Abstract: The C-terminus of mouse talin (amino acids 2345-2541) is responsible for all of the protein's f-actin binding capacity Unlike full-length talin, the C-terminal f-actin binding domain is unable to nucleate actin polymerization We have found that transient and stable expression of the talin actin-binding domain fused to the C-terminus of the green fluorescent protein (GFP-mTn) can visualize the actin cytoskeleton in different types of living plant cells without affecting cell morphology or function Transiently expressed GFP-mTn co-localized with rhodamine-phalloidin in permeabilized tobacco BY-2 suspension cells, showing that the fusion protein can specifically label the plant actin cytoskeleton Constitutive expression of GFP-mTn in transgenic Arabidopsis thaliana plants visualized actin filaments in all examined tissues with no apparent effects on plant morphology or development at any stage during the life cycle This demonstrates that in a number of different cell types GFP-mTn can serve as a non-invasive marker for the actin cytoskeleton Confocal imaging of GFP-mTn labeled actin filaments was employed to reveal novel information on the in vivo organization of the actin cytoskeleton in transiently transformed, normally elongating tobacco pollen tubes

617 citations

Journal ArticleDOI
TL;DR: It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.
Abstract: Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.

616 citations

Journal ArticleDOI
TL;DR: The aging brain is responsive to actions of estrogens, which have neuroprotective effects both in vivo and in vitro, however, in an animal model, the actions ofEstrogen on the hippocampus appear to be somewhat attenuated with age.
Abstract: Besides their well-established actions on reproductive functions, estrogens exert a variety of actions on many regions of the nervous system that influence higher cognitive function, pain mechanism...

615 citations


Authors

Showing all 15925 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Baltimore203876162955
Ronald M. Evans199708166722
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Scott M. Grundy187841231821
Jie Zhang1784857221720
Andrea Bocci1722402176461
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Zena Werb168473122629
Nahum Sonenberg167647104053
Michel C. Nussenzweig16551687665
Harvey F. Lodish165782101124
Dennis R. Burton16468390959
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

92% related

Yale University
220.6K papers, 12.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202284
2021873
2020792
2019716
2018767