scispace - formally typeset
Search or ask a question
Institution

Rockefeller University

EducationNew York, New York, United States
About: Rockefeller University is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Gene. The organization has 15867 authors who have published 32938 publications receiving 2940261 citations. The organization is also known as: Rockefeller University & Rockefeller Institute.
Topics: Population, Gene, Virus, RNA, Antigen


Papers
More filters
Journal ArticleDOI
TL;DR: Animal models of chronic sleep deprivation indicate that memory is impaired along with depletion of glycogen stores and increases in oxidative stress and free radical production, further evidence that sleep deprivation is a chronic stressor and that the resulting allostatic load can contribute to cognitive problems, which can, in turn, further exacerbate pathways that lead to disease.
Abstract: Sleep has important homeostatic functions, and sleep deprivation is a stressor that has consequences for the brain, as well as many body systems. Whether sleep deprivation is due to anxiety, depression, or a hectic lifestyle, there are consequences of chronic sleep deprivation that impair brain functions and contribute to allostatic load throughout the body. Allostatic load refers to the cumulative wear and tear on body systems caused by too much stress and/or inefficient management of the systems that promote adaptation through allostasis. Chronic sleep deprivation in young healthy volunteers has been reported to increase appetite and energy expenditure, increase levels of proinflammatory cytokines, decrease parasympathetic and increase sympathetic tone, increase blood pressure, increase evening cortisol levels, as well as elevate insulin and blood glucose. Repeated stress in animal models causes brain regions involved in memory and emotions, such as hippocampus, amygdala, and prefrontal cortex, to undergo structural remodeling with the result that memory is impaired and anxiety and aggression are increased. Structural and functional magnetic resonance imaging studies in depression and Cushing's disease, as well as anxiety disorders, provide evidence that the human brain may be similarly affected. Moreover, brain regions such as the hippocampus are sensitive to glucose and insulin, and both type 1 and type 2 diabetes mellitus are associated with cognitive impairment and (for type 2 diabetes mellitus) increased risk for Alzheimer's disease. Animal models of chronic sleep deprivation indicate that memory is impaired along with depletion of glycogen stores and increases in oxidative stress and free radical production. Taken together, these changes in brain and body are further evidence that sleep deprivation is a chronic stressor and that the resulting allostatic load can contribute to cognitive problems, which can, in turn, further exacerbate pathways that lead to disease.

555 citations

Journal ArticleDOI
TL;DR: Results indicate a causal link of synapsin phosphorylation via BDNF, TrkB receptors and MAP kinase with downstream facilitation of neurotransmitter release.
Abstract: We examined enhancement of synaptic transmission by neurotrophins at the presynaptic level. In a synaptosomal preparation, brain-derived neurotrophic factor (BDNF) increased mitogen-activated protein (MAP) kinase-dependent synapsin I phosphorylation and acutely facilitated evoked glutamate release. PD98059, used to inhibit MAP kinase activity, markedly decreased synapsin I phosphorylation and concomitantly reduced neurotransmitter release. The stimulation of glutamate release by BDNF was strongly attenuated in mice lacking synapsin I and/or synapsin II. These results indicate a causal link of synapsin phosphorylation via BDNF, TrkB receptors and MAP kinase with downstream facilitation of neurotransmitter release.

555 citations

Journal ArticleDOI
TL;DR: A review of the principal features of DC that are useful in their identification, purification, and differentiation from mononuclear phagocytes, the other cell type most often considered in studies of accessory cell functions, and properties of DC in situ are considered.
Abstract: Dendritic cells (DC) are irregularly shaped cells that were initially identified in the glass and plastic adherent population of mouse spleen. DC are la*, Ig", thy-1" bone marrow derived elements that show little or no endocytic activity for several tracers. DC occur in low frequency accounting for less than 1 *% of the cells in all organs we have studied. However, methods have been developed for their enrichment. DC in small numbers stimulate allogeneic and syngeneic mixed leukocyte reactions (MLR) and serve as accessory cells for the development of in viiro immune responses. This review will consider several topics: a) the principal features of DC that are useful in their identification, purification, and differentiation from mononuclear phagocytes the other cell type most often considered in studies of accessory cell functions; b) surface markers of DC including expression of la antigens; c) properties of DC in situ; and d) functional capacities of DC in vitro.

554 citations

Journal ArticleDOI
07 Jul 2011-Nature
TL;DR: This novel DC-SIGN–TH2 pathway initiated by an endogenous ligand, sFc, provides an intrinsic mechanism for maintaining immune homeostasis that could be manipulated to provide therapeutic benefit in autoimmune diseases.
Abstract: High-dose intravenous immunoglobulin is a widely used therapeutic preparation of highly purified immunoglobulin G (IgG) antibodies. It is administered at high doses (1-2 grams per kilogram) for the suppression of autoantibody-triggered inflammation in a variety of clinical settings. This anti-inflammatory activity of intravenous immunoglobulin is triggered by a minor population of IgG crystallizable fragments (Fcs), with glycans terminating in α2,6 sialic acids (sFc) that target myeloid regulatory cells expressing the lectin dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN; also known as CD209). Here, to characterize this response in detail, we generated humanized DC-SIGN mice (hDC-SIGN), and demonstrate that the anti-inflammatory activity of intravenous immunoglobulin can be recapitulated by the transfer of bone-marrow-derived sFc-treated hDC-SIGN(+) macrophages or dendritic cells into naive recipients. Furthermore, sFc administration results in the production of IL-33, which, in turn, induces expansion of IL-4-producing basophils that promote increased expression of the inhibitory Fc receptor FcγRIIB on effector macrophages. Systemic administration of the T(H)2 cytokines IL-33 or IL-4 upregulates FcγRIIB on macrophages, and suppresses serum-induced arthritis. Consistent with these results, transfer of IL-33-treated basophils suppressed induced arthritic inflammation. This novel DC-SIGN-T(H)2 pathway initiated by an endogenous ligand, sFc, provides an intrinsic mechanism for maintaining immune homeostasis that could be manipulated to provide therapeutic benefit in autoimmune diseases.

554 citations

Journal ArticleDOI
17 Aug 1990-Science
TL;DR: Overexpression of apolipoprotein CIII can be a primary cause of hypertriglyceridemia in vivo and may provide one possible etiology for this common disorder in humans.
Abstract: Primary and secondary hypertriglyceridemia is common in the general population, but the biochemical basis for this disease is largely unknown. With the use of transgenic technology, two lines of mice were created that express the human apolipoprotein CIII gene. One of these mouse lines with 100 copies of the gene was found to express large amounts of the protein and to be severely hypertriglyceridemic. The other mouse line with one to two copies of the gene expressed low amounts of the protein, but nevertheless manifested mild hypertriglyceridemia. Thus, overexpression of apolipoprotein CIII can be a primary cause of hypertriglyceridemia in vivo and may provide one possible etiology for this common disorder in humans.

554 citations


Authors

Showing all 15925 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Baltimore203876162955
Ronald M. Evans199708166722
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Scott M. Grundy187841231821
Jie Zhang1784857221720
Andrea Bocci1722402176461
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Zena Werb168473122629
Nahum Sonenberg167647104053
Michel C. Nussenzweig16551687665
Harvey F. Lodish165782101124
Dennis R. Burton16468390959
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

92% related

Yale University
220.6K papers, 12.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202284
2021873
2020792
2019716
2018767