scispace - formally typeset
Search or ask a question
Institution

Rockefeller University

EducationNew York, New York, United States
About: Rockefeller University is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Gene. The organization has 15867 authors who have published 32938 publications receiving 2940261 citations. The organization is also known as: Rockefeller University & Rockefeller Institute.
Topics: Population, Gene, Virus, RNA, Antigen


Papers
More filters
Journal ArticleDOI
27 Jun 1986-Science
TL;DR: The identification of aminoguanidine as an inhibitor of advanced nonenzymatic glycosylation product formation makes possible precise experimental definition of the pathogenetic significance of this process and suggests a potential clinical role for aminogsuanidine in the future treatment of chronic diabetic complications.
Abstract: Age-associated increases in collagen cross-linking and accumulation of advanced glycosylation products are both accelerated by diabetes, suggesting that glucose-derived cross-link formation may contribute to the development of chronic diabetic complications as well as certain physical changes of aging. Aminoguanidine, a nucleophilic hydrazine compound, prevented both the formation of fluorescent advanced nonenzymatic glycosylation products and the formation of glucose-derived collagen cross-links in vitro. Aminoguanidine administration to rats was equally effective in preventing diabetes-induced formation of fluorescent advanced nonenzymatic glycosylation products and cross-linking of arterial wall connective tissue protein in vivo. The identification of aminoguanidine as an inhibitor of advanced nonenzymatic glycosylation product formation now makes possible precise experimental definition of the pathogenetic significance of this process and suggests a potential clinical role for aminoguanidine in the future treatment of chronic diabetic complications.

1,199 citations

Journal ArticleDOI
TL;DR: A cell contains millions of protein molecules, which are continually being synthesized and degraded, and at homeostasis, a given species of protein is represented by a characteristic number of molecules that is kept constant within a narrow range.
Abstract: Concurrently with or shortly after their synthesis on ribosomes, numerous specific proteins are unidirectionally translocated across or asymmetrically integrated into distinct cellular membranes. Thereafter, subpopulations of these proteins need to be sorted from each other and routed for export or targeted to other intracellular membranes or compartments. It is hypothesized here that the information for these processes, termed “protein topogenesis,” is encoded in discrete “topogenic” sequences that constitute a permanent or transient part of the polypeptide chain. The repertoire of distinct topogenic sequences is predicted to be relatively small because many different proteins would be topologically equivalent—i.e., targeted to the same intracellular address. The information content of topogenic sequences would be decoded and processed by distinct effectors. Four types of topogenic sequences could be distinguished: signal sequences, stop-transfer sequences, sorting sequences, and insertion sequences. Signal sequences initiate translocation of proteins across specific membranes. They would be decoded and processed by protein translocators that, by virtue of their signal sequence-specific domain and their unique location in distinct cellular membranes, effect unidirectional translocation of proteins across specific cellular membranes. Stop-transfer sequences interrupt the translocation process that was previously initiated by a signal sequence and, by excluding a distinct segment of the polypeptide chain from translocation, yield asymmetric integration of proteins into translocation-competent membranes. Sorting sequences would act as determinants for posttranslocational traffic of subpopulations of proteins, originating in translocation-competent donor membranes (and compartments) and going to translocation-incompetent receiver membranes (and compartments). Finally, insertion sequences initiate unilateral integration of proteins into the lipid bilayer without the mediation of a distinct protein effector. Examples are given for topogenic sequences, either alone or in combination, to provide the information for the location of proteins in any of the intracellular compartments or for the asymmetric orientation of proteins and their location in any of the cellular membranes. Proposals are made concerning the evolution of topogenic sequences and the relationship of protein topogenesis to the precellular evolution of membranes and compartments.

1,199 citations

Journal ArticleDOI
30 May 2002-Nature
TL;DR: Amino-acid sequence conservation suggests a common structural basis for gating in a wide range of K+ channels, both ligand- and voltage-gated.
Abstract: Living cells regulate the activity of their ion channels through a process known as gating. To open the pore, protein conformational changes must occur within a channel's membrane-spanning ion pathway. KcsA and MthK, closed and opened K(+) channels, respectively, reveal how such gating transitions occur. Pore-lining 'inner' helices contain a 'gating hinge' that bends by approximately 30 degrees. In a straight conformation four inner helices form a bundle, closing the pore near its intracellular surface. In a bent configuration the inner helices splay open creating a wide (12 A) entryway. Amino-acid sequence conservation suggests a common structural basis for gating in a wide range of K(+) channels, both ligand- and voltage-gated. The open conformation favours high conduction by compressing the membrane field to the selectivity filter, and also permits large organic cations and inactivation peptides to enter the pore from the intracellular solution.

1,199 citations

Journal ArticleDOI
19 Feb 1993-Science
TL;DR: Identification of the SH3 binding site provides a basis for understanding the interaction between the SH2 and SH3 domains and their targets.
Abstract: The Src homology 3 (SH3) region is a small protein domain present in a very large group of proteins, including cytoskeletal elements and signaling proteins. It is believed that SH3 domains serve as modules that mediate protein-protein associations and, along with Src homology 2 (SH2) domains, regulate cytoplasmic signaling. The SH3 binding sites of two SH3 binding proteins were localized to a nine- or ten-amino acid stretch very rich in proline residues. Similar SH3 binding motifs exist in the formins, proteins that function in pattern formation in embryonic limbs of the mouse, and one subtype of the muscarinic acetylcholine receptor. Identification of the SH3 binding site provides a basis for understanding the interaction between the SH3 domains and their targets.

1,195 citations

Journal ArticleDOI
TL;DR: It is demonstrated that advanced glycosylation products quench nitric oxide activity in vitro and in vivo and that inhibition of advanced glyCosylation with aminoguanidine preventsNitric oxide quenching, and ameliorates the vasodilatory impairment.
Abstract: Nitric oxide (an endothelium-derived relaxing factor) induces smooth muscle relaxation and is an important mediator in the regulation of vascular tone. Advanced glycosylation end products, the glucose-derived moieties that form nonenzymatically and accumulate on long-lived tissue proteins, have been implicated in many of the complications of diabetes and normal aging. We demonstrate that advanced glycosylation products quench nitric oxide activity in vitro and in vivo. Acceleration of the advanced glycosylation process in vivo results in a time-dependent impairment in endothelium-dependent relaxation. Inhibition of advanced glycosylation with aminoguanidine prevents nitric oxide quenching, and ameliorates the vasodilatory impairment. These results implicate advanced glycosylation products as important modulators of nitric oxide activity and endothelium-dependent relaxation.

1,194 citations


Authors

Showing all 15925 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Baltimore203876162955
Ronald M. Evans199708166722
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Scott M. Grundy187841231821
Jie Zhang1784857221720
Andrea Bocci1722402176461
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Zena Werb168473122629
Nahum Sonenberg167647104053
Michel C. Nussenzweig16551687665
Harvey F. Lodish165782101124
Dennis R. Burton16468390959
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

92% related

Yale University
220.6K papers, 12.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202284
2021873
2020792
2019716
2018767