scispace - formally typeset
Search or ask a question
Institution

Rockefeller University

EducationNew York, New York, United States
About: Rockefeller University is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Gene. The organization has 15867 authors who have published 32938 publications receiving 2940261 citations. The organization is also known as: Rockefeller University & Rockefeller Institute.
Topics: Population, Gene, Virus, RNA, Antigen


Papers
More filters
Journal ArticleDOI
TL;DR: This review examines the roles of intrinsic disorder in protein network architecture and shows that there are three general ways that intrinsic disorder can contribute: First, intrinsic Disorder can serve as the structural basis for hub protein promiscuity; secondly, intrinsically disordered proteins can bind to structured hub proteins; and thirdly, intrinsic disorderCan provide flexible linkers between functional domains with the linkers enabling mechanisms that facilitate binding diversity.
Abstract: Proteins participate in complex sets of interactions that represent the mechanistic foundation for much of the physiology and function of the cell. These protein-protein interactions are organized into exquisitely complex networks. The architecture of protein-protein interaction networks was recently proposed to be scale-free, with most of the proteins having only one or two connections but with relatively fewer 'hubs' possessing tens, hundreds or more links. The high level of hub connectivity must somehow be reflected in protein structure. What structural quality of hub proteins enables them to interact with large numbers of diverse targets? One possibility would be to employ binding regions that have the ability to bind multiple, structurally diverse partners. This trait can be imparted by the incorporation of intrinsic disorder in one or both partners. To illustrate the value of such contributions, this review examines the roles of intrinsic disorder in protein network architecture. We show that there are three general ways that intrinsic disorder can contribute: First, intrinsic disorder can serve as the structural basis for hub protein promiscuity; secondly, intrinsically disordered proteins can bind to structured hub proteins; and thirdly, intrinsic disorder can provide flexible linkers between functional domains with the linkers enabling mechanisms that facilitate binding diversity. An important research direction will be to determine what fraction of protein-protein interaction in regulatory networks relies on intrinsic disorder.

1,055 citations

Journal ArticleDOI
TL;DR: The alpha-hemolysin pore protein from Staphylococcus aureus is expressed inside the vesicle to create a selective permeability for nutrients to solve the energy and material limitations and increase the capacity of the reactor.
Abstract: An Escherichia coli cell-free expression system is encapsulated in a phospholipid vesicle to build a cell-like bioreactor. Large unilamellar vesicles containing extracts are produced in an oil–extract emulsion. To form a bilayer the vesicles are transferred into a feeding solution that contains ribonucleotides and amino acids. Transcription–translation of plasmid genes is isolated in the vesicles. Whereas in bulk solution expression of enhanced GFP stops after 2 h, inside the vesicle permeability of the membrane to the feeding solution prolongs the expression for up to 5 h. To solve the energy and material limitations and increase the capacity of the reactor, the α-hemolysin pore protein from Staphylococcus aureus is expressed inside the vesicle to create a selective permeability for nutrients. The reactor can then sustain expression for up to 4 days with a protein production of 30 μM after 4 days. Oxygen diffusion and osmotic pressure are critical parameters to maintain expression and avoid vesicle burst.

1,053 citations

Journal ArticleDOI
TL;DR: Improved, largely automated methods are described for the purification and analysis of peroxisomes, lysosomes, and mitochondria from the livers of rats injected with Triton WR-1339, making more conclusive and precise previous estimates of the biochemical and morphological properties of the three groups of cytoplasmic particles.
Abstract: Improved, largely automated methods are described for the purification and analysis o peroxisomes, lysosomes, and mitochondria from the livers of rats injected with Triton WR-1339. With these new methods, it has become possible to obtain, in less than 6 hr and with reliable reproducibility, mitochondria practically free of contaminants, as well as the rarer cytoplasmic particles in amounts (about 100 mg of protein) and in a state of purity (95%) that make them suitable for detailed biochemical studies. The results obtained so far on these preparations have made more conclusive and precise previous estimates of the biochemical and morphological properties of the three groups of cytoplasmic particles. In addition, peroxisomes were found to contain essentially all the L-α-hydroxy acid oxidase of the liver, as well as a small, but significant fraction of its NADP-linked isocitrate dehydrogenase activity. Another small fraction of the latter enzyme is present in the mitochondria, the remainder being associated with the cell sap. The mitochondrial localization of the metabolically active cytoplasmic DNA could be verified. The relative content of the fractions in mitochondria, whole peroxisomes, peroxisome cores, lysosomes, and endoplasmic reticulum was estimated independently by direct measurements on electron micrographs, and by linear programming (based on the assumption that the particles are biochemically homogeneous) of the results of enzyme assays. The two types of estimates agreed very well, except for one fraction in which low cytochrome oxidase activity was associated with mitochondrial damage.

1,052 citations

Journal ArticleDOI
01 Jan 2006-Immunity
TL;DR: This review will summarize recent results in Fc-receptor biology with an emphasis on data obtained in in vivo model systems.

1,051 citations

Journal ArticleDOI
29 Oct 1999-Cell
TL;DR: The PTEN structure reveals a phosphatase domain that is similar to protein phosphatases but has an enlarged active site important for the accommodation of the phosphoinositide substrate and a C2 domain that may serve to productively position the catalytic domain on the membrane.

1,050 citations


Authors

Showing all 15925 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Baltimore203876162955
Ronald M. Evans199708166722
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Scott M. Grundy187841231821
Jie Zhang1784857221720
Andrea Bocci1722402176461
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Zena Werb168473122629
Nahum Sonenberg167647104053
Michel C. Nussenzweig16551687665
Harvey F. Lodish165782101124
Dennis R. Burton16468390959
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

92% related

Yale University
220.6K papers, 12.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202284
2021873
2020792
2019716
2018767