scispace - formally typeset
Search or ask a question
Institution

Rockefeller University

EducationNew York, New York, United States
About: Rockefeller University is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Gene. The organization has 15867 authors who have published 32938 publications receiving 2940261 citations. The organization is also known as: Rockefeller University & Rockefeller Institute.
Topics: Population, Gene, Virus, RNA, Antigen


Papers
More filters
Journal ArticleDOI
18 Sep 2009-Immunity
TL;DR: It is shown that monocytes gave rise exclusively to CD103(-)CX(3)CR1(+) lamina propria DCs under the control of macrophage-colony-stimulating factor receptor (M-CSFR) and Fms-like thyrosine kinase 3 (Flt3) ligands.

844 citations

Journal ArticleDOI
TL;DR: The geographic distribution of pneumococci resistant to one or more of the antibiotics penicillin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline appears to be expanding, and there exist foci of resistance to chloramphenicol and rifampin.
Abstract: The geographic distribution of pneumococci resistant to one or more of the antibiotics penicillin, erythromycin, trimethoprim-sulfamethoxazole, and tetracycline appears to be expanding, and there exist foci of resistance to chloramphenicol and rifampin. Multiply resistant pneumococci are being encountered more commonly and are more often community acquired. Factors associated with infection caused by resistant pneumococci include young age, duration of hospitalization, infection with a pneumococcus of serogroup 6, 19, or 23 or serotype 14, and exposure to antibiotics to which the strain is resistant. At present, the most useful drugs for the management of resistant pneumococcal infections are cefotaxime, ceftriaxone, vancomycin, and rifampin. If the strains are susceptible, chloramphenicol may be useful as an alternative, less expensive agent. Appropriate interventions for the control of resistant pneumococcal outbreaks include investigation of the prevalence of resistant strains, isolation of patients, possible treatment of carriers, and reduction of usage of antibiotics to which the strain is resistant. The molecular mechanisms of penicillin resistance are related to the structure and function of penicillin-binding proteins, and the mechanisms of resistance to other agents involved in multiple resistance are being elucidated. Recognition is increasing of the standard screening procedure for penicillin resistance, using a 1-microgram oxacillin disk.

844 citations

Journal ArticleDOI
TL;DR: A critical review of the recent literature in smell and taste studies in Drosophila is provided to provide broad insights into the problem of sensory coding.
Abstract: The chemical senses—smell and taste—allow animals to evaluate and distinguish valuable food resources from dangerous substances in the environment. The central mechanisms by which the brain recognizes and discriminates attractive and repulsive odorants and tastants, and makes behavioral decisions accordingly, are not well understood in any organism. Recent molecular and neuroanatomical advances in Drosophila have produced a nearly complete picture of the peripheral neuroanatomy and function of smell and taste in this insect. Neurophysiological experiments have begun to provide insight into the mechanisms by which these animals process chemosensory cues. Given the considerable anatomical and functional homology in smell and taste pathways in all higher animals, experimental approaches in Drosophila will likely provide broad insights into the problem of sensory coding. Here we provide a critical review of the recent literature in this field and comment on likely future directions.

842 citations

Journal ArticleDOI
TL;DR: The working hypothesis is that structural plasticity in response to repeated stress starts out as an adaptive and protective response, but ends up as damage if the imbalance in the regulation of the key mediators is not resolved.
Abstract: The hippocampus is an important structure for declarative, spatial, and contextual memory and is implicated in the perception of chronic pain. The hippocampal formation is vulnerable to damage from seizures, ischemia, and head trauma and is particularly sensitive to the effects of adrenal glucocorticoids secreted during the diurnal rhythm and chronic stress. Adrenal steroids typically have adaptive effects in the short run, but promote pathophysiology when there is either repeated stress or dysregulation of the HPA axis. The damaging actions of glucocorticoids under such conditions have been termed “allostatic load”, referring to the cost to the body of adaptation to adverse conditions. Adrenal steroids display both protective and damaging effects in the hippocampus. They biphasically modulate excitability of hippocampal neurons, and high glucocorticoid levels and severe acute stress impair declarative memory in a reversible manner. The hippocampus also displays structural plasticity, involving ongoing neurogenesis of the dentate gyrus, synaptogenesis under control of estrogens in the CA1 region, and dendritic remodeling caused by repeated stress or elevated levels of exogenous glucocorticoids in the CA3 region. In all three forms of structural plasticity, excitatory amino acids participate along with circulating steroid hormones. Glucocorticoids and stressors suppress neurogenesis in the dentate gyrus. They also potentiate the damage produced by ischemia and seizures. Moreover, the aging rat hippocampus displays elevated and prolonged levels of excitatory amino acids released during acute stress. Our working hypothesis is that structural plasticity in response to repeated stress starts out as an adaptive and protective response, but ends up as damage if the imbalance in the regulation of the key mediators is not resolved. It is likely that morphological rearrangements in the hippocampus brought on by various types of allostatic load alter the manner in which the hippocampus participates in memory functions and it is conceivable that these may also have a role in chronic pain perception.

842 citations

Journal ArticleDOI
02 Nov 2001-Science
TL;DR: Nerve cells communicate with each other through two mechanisms, referred to as fast and slow synaptic transmission, which control the efficacy of fast synaptic transmission by regulates the efficiency of neurotransmitter release from presynaptic terminals and by regulating the efficiency with which fast-acting neurotransmitters produce their effects on postsynaptic receptors.
Abstract: Nerve cells communicate with each other through two mechanisms, referred to as fast and slow synaptic transmission. Fast-acting neurotransmitters, e.g., glutamate (excitatory) and gamma-aminobutyric acid (GABA) (inhibitory), achieve effects on their target cells within one millisecond by virtue of opening ligand-operated ion channels. In contrast, all of the effects of the biogenic amine and peptide neurotransmitters, as well as many of the effects of glutamate and GABA, are achieved over hundreds of milliseconds to minutes by slow synaptic transmission. This latter process is mediated through an enormously more complicated sequence of biochemical steps, involving second messengers, protein kinases, and protein phosphatases. Slow-acting neurotransmitters control the efficacy of fast synaptic transmission by regulating the efficiency of neurotransmitter release from presynaptic terminals and by regulating the efficiency with which fast-acting neurotransmitters produce their effects on postsynaptic receptors.

841 citations


Authors

Showing all 15925 results

NameH-indexPapersCitations
Bruce S. McEwen2151163200638
David Baltimore203876162955
Ronald M. Evans199708166722
Lewis C. Cantley196748169037
Ronald Klein1941305149140
Scott M. Grundy187841231821
Jie Zhang1784857221720
Andrea Bocci1722402176461
Ralph M. Steinman171453121518
Masayuki Yamamoto1711576123028
Zena Werb168473122629
Nahum Sonenberg167647104053
Michel C. Nussenzweig16551687665
Harvey F. Lodish165782101124
Dennis R. Burton16468390959
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Scripps Research Institute
32.8K papers, 2.9M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

92% related

Yale University
220.6K papers, 12.8M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202314
202284
2021873
2020792
2019716
2018767