scispace - formally typeset
Search or ask a question
Institution

Rothamsted Research

FacilityHarpenden, United Kingdom
About: Rothamsted Research is a facility organization based out in Harpenden, United Kingdom. It is known for research contribution in the topics: Population & Soil water. The organization has 1748 authors who have published 5617 publications receiving 321268 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing.
Abstract: There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://Msi-workgroups-feedback@lists.sourceforge.net. Further, community input related to this document can also be provided via this electronic forum.

3,301 citations

Journal ArticleDOI
TL;DR: Soils collected across a long-term liming experiment were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria, and both the relative abundance and diversity of bacteria were positively related to pH.
Abstract: Soils collected across a long-term liming experiment (pH 4.0-8.3), in which variation in factors other than pH have been minimized, were used to investigate the direct influence of pH on the abundance and composition of the two major soil microbial taxa, fungi and bacteria. We hypothesized that bacterial communities would be more strongly influenced by pH than fungal communities. To determine the relative abundance of bacteria and fungi, we used quantitative PCR (qPCR), and to analyze the composition and diversity of the bacterial and fungal communities, we used a bar-coded pyrosequencing technique. Both the relative abundance and diversity of bacteria were positively related to pH, the latter nearly doubling between pH 4 and 8. In contrast, the relative abundance of fungi was unaffected by pH and fungal diversity was only weakly related with pH. The composition of the bacterial communities was closely defined by soil pH; there was as much variability in bacterial community composition across the 180-m distance of this liming experiment as across soils collected from a wide range of biomes in North and South America, emphasizing the dominance of pH in structuring bacterial communities. The apparent direct influence of pH on bacterial community composition is probably due to the narrow pH ranges for optimal growth of bacteria. Fungal community composition was less strongly affected by pH, which is consistent with pure culture studies, demonstrating that fungi generally exhibit wider pH ranges for optimal growth.

2,966 citations

Journal ArticleDOI
TL;DR: A short resumé of each fungus in the Top 10 list and its importance is presented, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark.
Abstract: The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resume of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10.

2,807 citations

Journal ArticleDOI
19 Feb 2010-Science
TL;DR: A meta-analysis of a regional acidification phenomenon in Chinese arable soils that is largely associated with higher N fertilization and higher crop production is presented, likely to threaten the sustainability of agriculture and affect the biogeochemical cycles of nutrients and also toxic elements in soils.
Abstract: Soil acidification is a major problem in soils of intensive Chinese agricultural systems. We used two nationwide surveys, paired comparisons in numerous individual sites, and several long-term monitoring-field data sets to evaluate changes in soil acidity. Soil pH declined significantly ( P + ) per hectare per year, and base cations uptake contributed a further 15 to 20 kilomoles of H + per hectare per year to soil acidification in four widespread cropping systems. In comparison, acid deposition (0.4 to 2.0 kilomoles of H + per hectare per year) made a small contribution to the acidification of agricultural soils across China.

2,736 citations

Journal ArticleDOI
TL;DR: Growing evidence suggests a model for redox homeostasis in which the reactive oxygen species (ROS)–antioxidant interaction acts as a metabolic interface for signals derived from metabolism and from the environment.
Abstract: Low molecular weight antioxidants, such as ascorbate, glutathione, and tocopherol, are information-rich redox buffers that interact with numerous cellular components. In addition to crucial roles in defense and as enzyme cofactors, cellular antioxidants influence plant growth and development by modulating processes from mitosis and cell elongation to senescence and death (De Pinto and De Gara, 2004; Potters et al., 2004; Tokunaga et al., 2005). Most importantly, antioxidants provide essential information on cellular redox state, and they influence gene expression associated with biotic and abiotic stress responses to maximize defense. Growing evidence suggests a model for redox homeostasis in which the reactive oxygen species (ROS)–antioxidant interaction acts as a metabolic interface for signals derived from metabolism and from the environment. This interface modulates the appropriate induction of acclimation processes or, alternatively, execution of cell death programs.

2,543 citations


Authors

Showing all 1776 results

NameH-indexPapersCitations
Jun Wang1661093141621
Christine H. Foyer11649061381
Steve P. McGrath11548346326
Fang-Jie Zhao10737239328
Peter R. Shewry9784540265
Michael J.E. Sternberg9332739429
Mark Wilkinson87101438539
John A. Pickett8460226236
Philip C. Brookes8431142635
Mike J. McLaughlin8043523522
Graham J.W. King7958626012
Enzo Lombi7528019824
Peter J. Lea7327118856
Graham Noctor7312430571
David Hopkins7333922807
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

92% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

92% related

University of Hohenheim
16.4K papers, 567.3K citations

91% related

Nanjing Agricultural University
27.3K papers, 546.5K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
202238
2021364
2020367
2019336
2018318