scispace - formally typeset
Search or ask a question
Institution

Royal Institute of Technology

EducationStockholm, Sweden
About: Royal Institute of Technology is a education organization based out in Stockholm, Sweden. It is known for research contribution in the topics: Computer science & Population. The organization has 21935 authors who have published 68420 publications receiving 1948682 citations.


Papers
More filters
Journal ArticleDOI
18 Aug 2017-Science
TL;DR: A Human Pathology Atlas has been created as part of the Human Protein Atlas program to explore the prognostic role of each protein-coding gene in 17 different cancers, and reveals that gene expression of individual tumors within a particular cancer varied considerably and could exceed the variation observed between distinct cancer types.
Abstract: Cancer is one of the leading causes of death, and there is great interest in understanding the underlying molecular mechanisms involved in the pathogenesis and progression of individual tumors. We used systems-level approaches to analyze the genome-wide transcriptome of the protein-coding genes of 17 major cancer types with respect to clinical outcome. A general pattern emerged: Shorter patient survival was associated with up-regulation of genes involved in cell growth and with down-regulation of genes involved in cellular differentiation. Using genome-scale metabolic models, we show that cancer patients have widespread metabolic heterogeneity, highlighting the need for precise and personalized medicine for cancer treatment. All data are presented in an interactive open-access database (www.proteinatlas.org/pathology) to allow genome-wide exploration of the impact of individual proteins on clinical outcomes.

2,276 citations

Journal ArticleDOI
TL;DR: The analysis here suggests that state stem cell funding programs are sufficiently large and established that simply ending the programs, at least in the absence of substantial investment in the field by other funding sources, could have deleterious effects.
Abstract: 1. Anonymous. Nat. Biotechnol. 28, 987 (2010). 2. Plosila, W.H. Econ. Dev. Q. 18, 113–126 (2004). 3. Stayn, S. BNA Med. Law Pol. Rep. 5, 718–725 (2006). 4. Lomax, G. & Stayn, S. BNA Med. Law Pol. Rep. 7, 695–698 (2008). 5. Levine, A.D. Public Adm. Rev. 68, 681–694 (2008). 6. Levine, A.D. Nat. Biotechnol. 24, 865–866 (2006). 7. McCormick, J.B., Owen-Smith, J. & Scott, C.T. Cell Stem Cell 4, 107–110 (2009). 8. Fossett, J.W., Ouellette, A.R., Philpott, S., Magnus, D. & Mcgee, G. Hastings Cent. Rep. 37, 24–35 (2007). 9. Mintrom, M. Publius 39, 606–631 (2009). 10. Scott, C.T., McCormick, J.B. & Owen-Smith, J. Nat. Biotechnol. 27, 696–697 (2009). 11. Takahashi, K. & Yamanaka, S. Cell 126, 663–676 (2006). Foundation and the Georgia Research Alliance, and Georgia Tech. They thank J. Walsh at Georgia Tech for helpful comments on an earlier version of this manuscript. They also appreciate the assistance they received with data collection from officials in various state stem cell agencies. A.D.L. would also like to thank A. Jakimo, whose comment at a meeting of the Interstate Alliance on Stem Cell Research inspired collection of these data. stem cell programs, as well as similar state programs supporting other areas of science, is uncertain. The analysis here suggests that state stem cell funding programs are sufficiently large and established that simply ending the programs, at least in the absence of substantial investment in the field by other funding sources, could have deleterious effects. Such action would fail to capitalize on the initial efforts of scientists who have been drawn to the field of stem cell research by state programs and leave many stem cell scientists suddenly searching for funding to continue their research. Large-scale state funding for basic research is a relatively new phenomenon, and many questions remain about the impact of these programs on the development of scientific fields and the careers of scientists. The influence of state funding programs on the distribution of research publications, the acquisition of future external funding, the creation of new companies and the translation of basic research into medical practice, for instance, are important unanswered questions. Similarly, comparing state funding programs with federal funding programs as well as foundations could offer new insight into the relative priorities of different funding bodies and the extent to which their funding portfolios overlap or are distinct. We hope the analysis presented here and the public release of the underlying database will inspire additional analysis of state science funding programs generally and state-funded stem cell science in particular.

2,131 citations

Journal ArticleDOI
TL;DR: In this paper, some such patterns, based on a sample of 78 eukaryotic signal sequences, are presented and discussed, and a first attempt at formulating rules for the prediction of cleavage sites is made.
Abstract: According to the signal hypothesis, a signal sequence, once having initiated export of a growing protein chain across the rough endoplasmic reticulum, is cleaved from the mature protein at a specific site. It has long been known that some part of the cleavage specificity resides in the last residue of the signal sequence, which invariably is one with a small, uncharged side-chain, but no further specific patterns of amino acids near the point of cleavage have been discovered so far. In this paper, some such patterns, based on a sample of 78 eukaryotic signal sequences, are presented and discussed, and a first attempt at formulating rules for the prediction of cleavage sites is made.

2,126 citations

Journal ArticleDOI
TL;DR: The results show subtle differences between eukaryotic and prokaryotic sequences, but the general impression of signal sequences as being highly variable is reinforced.

2,053 citations

Journal ArticleDOI
Thomas J. Hudson1, Thomas J. Hudson2, Warwick Anderson3, Axel Aretz4  +270 moreInstitutions (92)
15 Apr 2010
TL;DR: Systematic studies of more than 25,000 cancer genomes will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
Abstract: The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.

2,041 citations


Authors

Showing all 22157 results

NameH-indexPapersCitations
Jie Zhang1784857221720
Pulickel M. Ajayan1761223136241
Donald E. Ingber164610100682
Jens Nielsen1491752104005
Jan-Åke Gustafsson147105898804
Jan Conrad14182671445
Jun Lu135152699767
Hui Li1352982105903
Frank Caruso13164161748
Anders Hagfeldt12960079912
Jian Zhou128300791402
Jonas Strandberg128102580318
Peter Hansen128127186210
Anthony Keith Morley12885174556
Bengt Lund-Jensen12891576643
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

ETH Zurich
122.4K papers, 5.1M citations

96% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

94% related

Nanyang Technological University
112.8K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023109
2022403
20214,016
20204,049
20194,014
20183,943