scispace - formally typeset
Search or ask a question

Showing papers by "Royal Society for the Protection of Birds published in 2015"


Journal ArticleDOI
TL;DR: In this paper, a review of the global literature explores these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Abstract: Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.

1,131 citations


Journal ArticleDOI
TL;DR: In this paper, the authors estimate that PAs currently cover 14.6% of terrestrial and 2.8% of marine extent, but 59-68% of ecoregions, 77-78% of important sites for biodiversity, and 57% of 25,380 species have inadequate coverage.
Abstract: Governments have committed to conserving 17% of terrestrial and 10% of marine environments globally, especially “areas of particular importance for biodiversity” through “ecologically representative” Protected Area (PA) systems or other “area-based conservation measures”, while individual countries have committed to conserve 3–50% of their land area. We estimate that PAs currently cover 14.6% of terrestrial and 2.8% of marine extent, but 59–68% of ecoregions, 77–78% of important sites for biodiversity, and 57% of 25,380 species have inadequate coverage. The existing 19.7 million km 2 terrestrial PA network needs only 3.3 million km 2 to be added to achieve 17% terrestrial coverage. However, it would require nearly doubling to achieve, costefficiently, coverage targets for all countries, ecoregions, important sites, and species. Poorer countries have the largest relative shortfalls. Such extensive and rapid expansion of formal PAs is unlikely to be achievable. Greater focus is therefore needed on alternative approaches, including community- and privately managed sites and other effective area-based conservation measures.

367 citations



Journal ArticleDOI
TL;DR: Protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins and other ecosystem-based management methods must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales.
Abstract: Cumulative human impacts across the world's oceans are considerable. We therefore examined a single model taxonomic group, the penguins (Spheniscidae), to explore how marine species and communities might be at risk of decline or extinction in the southern hemisphere. We sought to determine the most important threats to penguins and to suggest means to mitigate these threats. Our review has relevance to other taxonomic groups in the southern hemisphere and in northern latitudes, where human impacts are greater. Our review was based on an expert assessment and literature review of all 18 penguin species; 49 scientists contributed to the process. For each penguin species, we considered their range and distribution, population trends, and main anthropogenic threats over the past approximately 250 years. These threats were harvesting adults for oil, skin, and feathers and as bait for crab and rock lobster fisheries; harvesting of eggs; terrestrial habitat degradation; marine pollution; fisheries bycatch and resource competition; environmental variability and climate change; and toxic algal poisoning and disease. Habitat loss, pollution, and fishing, all factors humans can readily mitigate, remain the primary threats for penguin species. Their future resilience to further climate change impacts will almost certainly depend on addressing current threats to existing habitat degradation on land and at sea. We suggest protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins. However, large-scale conservation zones are not always practical or politically feasible and other ecosystem-based management methods that include spatial zoning, bycatch mitigation, and robust harvest control must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales.

172 citations


Journal ArticleDOI
TL;DR: The regulatory approach introduced by the Regulation will have only a limited impact unless European citizens raise their awareness of this threat and adopt more responsible behaviours and it will be essential that adequate resources be secured for implementing the provisions of the legislation.
Abstract: Europe has adopted innovative legislation on invasive species that could signal a step-change in the global response to biological invasion threats. The discussion that took place within EU institutions—EU Parliament, European Commission, and the Member States—permitted significant improvement on the initial proposal presented by the European Commission, including removing the initial 50 species cap, explicitly allowing national authorities to take stringent measures on invasive species of national concern, and encouraging coordinated approaches to invasive species in boundary areas. An independent “Scientific Forum” to inform implementation has been introduced, and the EU Regulation will permit only limited licensing for specific activities using invasive alien species. However, the real strength of the legislation will largely depend on the decisions of a committee of representatives of the Member States, with the risk that the real enforcement will be limited by political and economic, rather than scientific, considerations. In this regard it will be crucial to set up a framework of roles and responsibilities among the different bodies that ensure transparent and objective decision processes. Also, it will be essential that adequate resources be secured for implementing the provisions of the legislation. Finally, the regulatory approach introduced by the Regulation will have only a limited impact unless European citizens raise their awareness of this threat and adopt more responsible behaviours.

148 citations


Journal ArticleDOI
TL;DR: In this paper, the main objectives of marketing and how these can be applied to conservation and animal welfare issues are discussed, and two examples: Project Ocean, where a major UK retailer joined forces with the Zoological Society of London to influence consumer behavior around seafood; and Blackfish, which coupled social media with an award-winning documentary to create a discussion around the welfare of large cetaceans in captivity.

123 citations


Journal ArticleDOI
TL;DR: Public perceptions research (PPR) in a marine conservation context provides tools to see the sea through the multiple lenses with which society interprets both the marine environment and marine conservation efforts as discussed by the authors.

116 citations


Journal ArticleDOI
TL;DR: In this paper, the authors compared field data from 511 plots in the tropical forest of Sierra Leone, Ghana, Cameroon and Gabon and showed that the effects of selective logging are greater than those expected simply from the removal of commercial species, and can persist for decades.
Abstract: Tropical deforestation is well known to have serious negative consequences for biodiversity, terrestrial carbon sinks and the balance of atmospheric greenhouse gases. By contrast, selective logging of tropical forests is often regarded as having a lesser impact on the ecosystem particularly in long terms, even though there have been few critical evaluations of the practice, particularly in Africa. We compared field data from 511 plots in the tropical forest of Sierra Leone, Ghana, Cameroon and Gabon. These plots were subject to different forest management practices: no recent logging (primary forests), selective logging (up to 30 years old) and re-grown secondary forests post clear-cutting (at least 20 years ago). Our findings suggest that the vertical structure and plant richness of the selectively logged and secondary forests change in different amplitude from those of primary forests, but stem density and the prevalence of vine and weed species differ greatly. We show that the effects of selective logging are greater than those expected simply from the removal of commercial species, and can persist for decades. Selective logging, unless it is practiced at very low harvest intensities, can significantly reduce the biomass of a tropical forest for many decades, seriously diminishing aboveground carbon storage capacity, and create opportunities for weeds and vines to spread and slow down the ecological succession.

110 citations


Journal ArticleDOI
TL;DR: This paper found that the perceived quality, views, and amount of time spent in nature were linked to more community cohesion, and in turn, the perception of cohesive communities enhanced individual well-being outcomes and contributions back to society through higher workplace productivity and environmentally responsible behaviors.
Abstract: Individuals may be losing touch with nature as their contact with it decreases worldwide. Although the consequences for people's personal well-being outcomes are becoming well documented, there is almost no research examining the social correlates of contact with nature. This article used a large nationally representative sample to link objective (percent greenspace) and subjective measurements of contact with nature, community cohesion, and local crime incidence. The perceived quality, views, and amount of time spent in nature were linked to more community cohesion, and in turn, the perception of cohesive communities enhanced individual well-being outcomes and contributions back to society through higher workplace productivity and environmentally responsible behaviors. Our findings also indicated that local nature was linked to lower crime both directly and indirectly through its effects on community cohesion.

99 citations


Journal ArticleDOI
01 Jul 2015-Ibis
TL;DR: The authors tracked 19 juvenile Egyptian Vultures from the declining breeding population on the Balkan Peninsula between 2010 and 2014 to estimate survival and identify important migratory routes and wintering areas for this species.
Abstract: Many populations of long-distance migrants are declining and there is increasing evidence that declines may be caused by factors operating outside the breeding season. Among the four vulture species breeding in the western Palaearctic, the species showing the steepest population decline, the Egyptian Vulture Neophron percnopterus, is a longdistance migrant wintering in Africa. However, the flyways and wintering areas of the species are only known for some populations, and without knowledge of where mortality occurs, effective conservation management is not possible. We tracked 19 juvenile Egyptian Vultures from the declining breeding population on the Balkan Peninsula between 2010 and 2014 to estimate survival and identify important migratory routes and wintering areas for this species. Mortality during the first autumn migration was high (monthly survival probability 0.75) but mortality during migration was exclusively associated with suboptimal navigation. All birds from western breeding areas and three birds from central and eastern breeding areas attempted to fly south over the Mediterranean Sea, but only one in 10 birds survived this route, probably due to stronger tailwind. All eight birds using the migratory route via Turkey and the Middle East successfully completed their first autumn migration. Of 14 individual and environmental variables examined to explain why juvenile birds did or did not successfully complete their first migration, the natal origin of the bird was the most influential. We speculate that in a declining population with fewer experienced adults, an increasing proportion of juvenile birds are forced to migrate without conspecific guidance, leading to high mortality as a consequence of following sub-optimal migratory routes. Juvenile Egyptian Vultures wintered across a vast range of the Sahel and eastern Africa, and had large movement ranges with core use areas at intermediate elevations in savannah, cropland or desert. Two birds were shot in Africa, where several significant threats exist for vultures at continental scales. Given the broad distribution of the birds and threats, effective conservation in Africa will be challenging and will require long-term investment. We recommend that in the short term, more efficient conservation could target narrow migration corridors in southern Turkey and the Middle East, and known congregation sites in African wintering areas.

90 citations


Journal ArticleDOI
05 Nov 2015-Nature
TL;DR: The genetic sex-determination system explains 24% of interspecific variation in ASRs in amphibians and 36% in reptiles, and several genetic factors could contribute to this pattern, including meiotic drive and sex-linked deleterious mutations.
Abstract: The adult sex ratio (ASR) has critical effects on behaviour, ecology and population dynamics, but the causes of variation in ASRs are unclear. Here we assess whether the type of genetic sex determination influences the ASR using data from 344 species in 117 families of tetrapods. We show that taxa with female heterogamety have a significantly more male-biased ASR (proportion of males: 0.55 ± 0.01 (mean ± s.e.m.)) than taxa with male heterogamety (0.43 ± 0.01). The genetic sex-determination system explains 24% of interspecific variation in ASRs in amphibians and 36% in reptiles. We consider several genetic factors that could contribute to this pattern, including meiotic drive and sex-linked deleterious mutations, but further work is needed to quantify their effects. Regardless of the mechanism, the effects of the genetic sex-determination system on the adult sex ratio are likely to have profound effects on the demography and social behaviour of tetrapods.

Journal ArticleDOI
TL;DR: A global terrestrial species monitoring program will enable researchers and policymakers to better understand the status and trends of biodiversity and to develop robust models to monitor biodiversity trends over large scales.


Journal ArticleDOI
TL;DR: This work identified the top 25 priority islands for invasive species eradication that together would benefit extant populations of 155 native species including 45 globally threatened species and identified the 5 most valuable islands.
Abstract: Invasive alien species are one of the primary threats to native biodiversity on islands worldwide. Consequently, eradicating invasive species from islands has become a mainstream conservation practice. Deciding which islands have the highest priority for eradication is of strategic importance to allocate limited resources to achieve maximum conservation benefit. Previous island prioritizations focused either on a narrow set of native species or on a small geographic area. We devised a prioritization approach that incorporates all threatened native terrestrial vertebrates and all invasive terrestrial vertebrates occurring on 11 U.K. overseas territories, which comprise over 2000 islands ranging from the sub-Antarctic to the tropics. Our approach includes eradication feasibility and distinguishes between the potential and realistic conservation value of an eradication, which reflects the benefit that would accrue following eradication of either all invasive species or only those species for which eradication techniques currently exist. We identified the top 25 priority islands for invasive species eradication that together would benefit extant populations of 155 native species including 45 globally threatened species. The 5 most valuable islands included the 2 World Heritage islands Gough (South Atlantic) and Henderson (South Pacific) that feature unique seabird colonies, and Anegada, Little Cayman, and Guana Island in the Caribbean that feature a unique reptile fauna. This prioritization can be rapidly repeated if new information or techniques become available, and the approach could be replicated elsewhere in the world.

Journal ArticleDOI
TL;DR: In this paper, the authors mapped burning for gamebird management across c45,000 km2 of the UK uplands and found that burning occurred across 8551 1-km squares, a third of the burned squares in Scotland and England were on peat ≥ 0.5m in depth, and the proportion of moorland burned within squares peaked at peat depths of 1-2m.

Journal ArticleDOI
TL;DR: In this paper, the authors used data from GPS and barometric pressure loggers to track the three-dimensional movements of northern gannets rearing chicks at a large colony in south-east Scotland (Bass Rock).
Abstract: A large increase in offshore wind turbine capacity is anticipated within the next decade, raising concerns about possible adverse impacts on birds as a result of collision risk. Birds' flight heights greatly influence this risk, yet height estimates are currently available only using methods such as radar- or ship-based observations over limited areas. 2. Bird-borne data-loggers have the potential to provide improved estimates of collision risk and here, we used data from Global Position System (GPS)-loggers and barometric pressure loggers to track the three-dimensional movements of northern gannets rearing chicks at a large colony in south-east Scotland (Bass Rock), located <50 km from several major wind farm developments with recent planning consent. We estimated the foraging ranges and densities of birds at sea, their flight heights during different activities and the spatial variation in height dur- ing trips. We then used these data in collision-risk models to explore how the use of different methods to determine flight height affects the predicted risk of birds colliding with turbines. 3. Gannets foraged in and around planned wind farm sites. The probability of flying at colli- sion-risk height was low during commuting between colonies and foraging areas (median height 12 m) but was greater during periods of active foraging (median height 27 m), and we estimated that ~1500 breeding adults from Bass Rock could be killed by collision with wind turbines at two planned sites in the Firth of Forth region each year. This is up to 12 times greater than the potential mortality predicted using other available flight-height estimates. 4. Synthesis and applications. The use of conventional flight-height estimation techniques resulted in large underestimates of the numbers of birds at risk of colliding with wind tur- bines. Hence, we recommend using GPS and barometric tracking to derive activity-specific and spatially explicit flight heights and collision risks. Our predictions of potential mortality approached levels at which long-term population viability could be threatened, highlighting a need for further data to refine estimates of collision risks and sustainable mortality thresh- olds. We also advocate raising the minimum permitted clearance of turbine blades at sites with high potential collision risk from 22 to 30 m above sea level.

Journal ArticleDOI
TL;DR: A workshop was convened with 34 experts in rat eradication, tropical rodent and island ecology and toxicology, focusing on projects using aerial broadcast of brodifacoum, a 2nd generation anticoagulant, because this approach has provided the highest success rate for eradicating rodents from islands.

Journal ArticleDOI
TL;DR: The method presented offers an alternative to existing methods as it uses biologically grounded arguments to distinguish behaviors, it is objective in determining values by which to separate these behaviors, and it is simple to implement, thus making it potentially widely applicable.
Abstract: Quantifying the behavior of motile, free-ranging animals is difficult. The accelerometry technique offers a method for recording behaviors but interpretation of the data is not straightforward. To date, analysis of such data has either involved subjective, study-specific assignments of behavior to acceleration data or the use of complex analyses based on machine learning. Here, we present a method for automatically classifying acceleration data to represent discrete, coarse-scale behaviors. The method centers on examining the shape of histograms of basic metrics readily derived from acceleration data to objectively determine threshold values by which to separate behaviors. Through application of this method to data collected on two distinct species with greatly differing behavioral repertoires, kittiwakes, and humans, the accuracy of this approach is demonstrated to be very high, comparable to that reported for other automated approaches already published. The method presented offers an alternative to existing methods as it uses biologically grounded arguments to distinguish behaviors, it is objective in determining values by which to separate these behaviors, and it is simple to implement, thus making it potentially widely applicable. The R script coding the method is provided.

Journal ArticleDOI
TL;DR: Competition for food around tropical oceanic seabird colonies may indeed be a limiting factor for populations, and identifying important feeding areas for seabirds based on their foraging range may need to account for colony size of both the target and potential competitor species.
Abstract: Many animals reproduce in large aggregations, which can vary in size from dozens to millions of individuals across species, time and space. The size of breeding colonies is a complex trade-off between multiple costs and benefits to an individual’s fitness, but the mechanisms by which colony size affects fitness are still poorly understood. One important cost of breeding in a large colony is the spatial constraint in resource use due to the need to regularly return to a central location. Large aggregations, like seabird breeding colonies, may therefore deplete food resources near the colony, forcing individuals to travel farther to find food, which may ultimately limit their reproductive output and population size. This hypothesis, proposed in 1963 by Ashmole for tropical oceanic islands, has so far not been tested at tropical seabird colonies, where food availability is less predictable than in colder waters. We compare the foraging distribution of a common tropical seabird, the masked booby Sula dactylatra, breeding on two islands in the South Atlantic that differ in the size of the breeding seabird community by 2 orders of magnitude, but are surrounded by similar oligotrophic waters. Foraging trips from the island with the smaller colony were on average 221 km (61 %) and 18.0 h (75 %) shorter because birds from the smaller colony rarely spent the night at sea and foraged on average 64 km (46 %) closer to the colony. Energy expenditure was significantly lower, and nest survival higher (47 vs. 37 %, n = 371) on the island with the smaller colony. These results are fully consistent with the predictions from Ashmole’s hypothesis and indicate that competition for food around tropical oceanic seabird colonies may indeed be a limiting factor for populations. Identifying important feeding areas for seabirds based on their foraging range may need to account for colony size of both the target and potential competitor species.

Journal ArticleDOI
TL;DR: Sub-clinical infection by Trichomonas gallinae is examined in a declining population of free-living European Turtle Doves and caseous lesions cause mortality in adults and nestlings through subsequent starvation and/or suffocation, highlighting the importance of monitoring populations for sub- clinical infection rather than just clinical disease.
Abstract: Studies incorporating the ecology of clinical and sub-clinical disease in wild populations of conservation concern are rare. Here we examine sub-clinical infection by Trichomonas gallinae in a declining population of free-living European Turtle Doves and suggest caseous lesions cause mortality in adults and nestlings through subsequent starvation and/or suffocation. We found a 100% infection rate by T. gallinae in adult and nestling Turtle Doves (n = 25) and observed clinical signs in three adults and four nestlings (28%). Adults with clinical signs displayed no differences in any skeletal measures of size but had a mean 3·7% reduction in wing length, with no overlap compared to those without clinical signs. We also identified T. gallinae as the suggested cause of mortality in one Red-legged Partridge although disease presentation was different. A minimum of four strains of T. gallinae, characterized at the ITS/5·8S/ITS2 ribosomal region, were isolated from Turtle Doves. However, all birds with clinical signs (Turtle Doves and the Red-legged Partridge) carried a single strain of T. gallinae, suggesting that parasite spill over between Columbidae and Galliformes is a possibility that should be further investigated. Overall, we highlight the importance of monitoring populations for sub-clinical infection rather than just clinical disease.

Journal ArticleDOI
TL;DR: It is shown that white-eyes have high rates of substitutions, gene duplication, and positive selection relative to other birds, and below genus level, it is found that genomic differentiation accumulates rapidly and reveals contrasting demographic histories between sympatric species on Lifou, indicative of past interspecific interactions.
Abstract: Among birds, white-eyes (genus Zosterops) have diversified so extensively that Jared Diamond and Ernst Mayr referred to them as the "great speciator." The Zosterops lineage exhibits some of the fastest rates of species diversification among vertebrates, and its members are the most prolific passerine island colonizers. We present a high-quality genome assembly for the silvereye (Zosterops lateralis), a white-eye species consisting of several subspecies distributed across multiple islands. We investigate the genetic basis of rapid diversification in white-eyes by conducting genomic analyses at varying taxonomic levels. First, we compare the silvereye genome with those of birds from different families and searched for genomic features that may be unique to Zosterops. Second, we compare the genomes of different species of white-eyes from Lifou island (South Pacific), using whole genome resequencing and restriction site associated DNA. Third, we contrast the genomes of two subspecies of silvereye that differ in plumage color. In accordance with theory, we show that white-eyes have high rates of substitutions, gene duplication, and positive selection relative to other birds. Below genus level, we find that genomic differentiation accumulates rapidly and reveals contrasting demographic histories between sympatric species on Lifou, indicative of past interspecific interactions. Finally, we highlight genes possibly involved in color polymorphism between the subspecies of silvereye. By providing the first whole-genome sequence resources for white-eyes and by conducting analyses at different taxonomic levels, we provide genomic evidence underpinning this extraordinary bird radiation.

Journal ArticleDOI
TL;DR: In this paper, the authors quantify the relative importance of climate, land use and surrounding population size in determining the abundances of birds across a continent, finding that climate is generally more important than land use in determining species abundances, while the abundance of species in neighbouring areas is also a major correlate.
Abstract: Aim: Climate and land use can have important effects on the local abundances of species, but few studies have investigated the relative impacts of these factors. Here, we quantify the relative importance of climate, land use and surrounding population size in determining the abundances of birds across a continent. Location: Europe. Methods: We used species abundance models to identify the relative importance of different environmental predictors for estimating the local abundances of 342 species of European breeding birds. Models controlling for phylogeny were used to relate species life history and ecological traits to the climate:land use importance ratio. The mean of this ratio, across all species occurring in a given area, was mapped to explore spatial variation in the major drivers of abundance. Results: At the scale examined, climate is generally more important than land use in determining species abundances. However, the abundance of species in neighbouring areas is also a major correlate. Among climate variables, temperature is of greater importance than moisture availability in determining abundances. The relative importance of these variables varies with latitude, with temperature being most important in the north, and moisture availability in the south. Differences in the importance of specific drivers are related to species ecological traits: climate is more important for determining the abundance of species that have larger global ranges or a smaller body mass. Main conclusions: Abundances of species occurring in northern Europe, an area predicted to experience climatic changes of high magnitude, are most sensitive to climate, particularly temperature. Given the greater confidence in future projections of temperature than precipitation, this increases confidence in projections of the impacts of climate change on species in the north, whilst attempts to predict future populations in central and southern Europe may be dependent on less predictable changes in land use and precipitation.

Journal ArticleDOI
01 Sep 2015-Genetics
TL;DR: It is concluded that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly, and the power of genetically characterizing the entire growth trajectory in wild populations is underscore.
Abstract: Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus ) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F 2 intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature.

Journal ArticleDOI
28 Sep 2015-Daedalus
TL;DR: This article summarized a model designed to resolve this disagreement, and reviewed the empirical evidence available to date, concluding that this evidence largely supports the second, so-called land-sparing approach to reconcile agriculture and biodiversity conservation, but that important questions remain over the generality of these findings for different biota and for ecosystem services.
Abstract: Opinions on how to limit the immense impact of agriculture on wild species are divided. Some think it best to retain as much wildlife as possible on farms, even at the cost of lowering yield (production per unit area). Others advocate the opposite: increasing yield so as to limit the area needed for farming, and then retaining larger areas under natural habitats. Still others support a mixture of the two extremes, or an intermediate approach. Here we summarize a model designed to resolve this disagreement, and review the empirical evidence available to date. We conclude that this evidence largely supports the second, so-called land-sparing approach to reconciling agriculture and biodiversity conservation, but that important questions remain over the generality of these findings for different biota and for ecosystem services, how best to increase yields while limiting environmental externalities, and whether there are effective, socially just, and practical mechanisms for coupling yield growth to habitat r...

Journal ArticleDOI
TL;DR: In this article, the authors examine the sources of uncertainty in environmental impact assessments and provide recommendations as to how these may be reduced, using the example of birds and wind farms, and identify and quantifying sources of uncertainties in environmental and cumulative impact assessments is critical to facilitating the development of an environmentally sustainable offshore wind industry.

Journal ArticleDOI
TL;DR: It is shown that climate, ecosystem processes and food chains combine to influence the population performance of species in British blanket bogs, and physical, biophysical and ecological processes combine to determine the distributions and survival of ecosystem-specialist predators.
Abstract: Climate change has the capacity to alter physical and biological ecosystem processes, jeopardizing the survival of associated species. This is a particular concern in cool, wet northern peatlands that could experience warmer, drier conditions. Here we show that climate, ecosystem processes and food chains combine to influence the population performance of species in British blanket bogs. Our peatland process model accurately predicts water-table depth, which predicts abundance of craneflies (keystone invertebrates), which in turn predicts observed abundances and population persistence of three ecosystem-specialist bird species that feed on craneflies during the breeding season. Climate change projections suggest that falling water tables could cause 56-81% declines in cranefly abundance and, hence, 15-51% reductions in the abundances of these birds by 2051-2080. We conclude that physical (precipitation, temperature and topography), biophysical (evapotranspiration and desiccation of invertebrates) and ecological (food chains) processes combine to determine the distributions and survival of ecosystem-specialist predators.

Journal ArticleDOI
TL;DR: Noisy miner densities increased with proximity to forest edges (higher densities on forest edges and open sites), in low rainfall areas, and in vegetation dominated by trees with blade-shaped rather than needle-shaped leaves.
Abstract: Aim Strongly interacting species have disproportionately large ecological effects relative to their abundances or biomass. We previously developed two conceptual models that described how one such strong interactor, the Australian bird the noisy miner Manorina melanocephala : (1) establishes resident high-density and hyperaggressive colonies and (2) in doing so, affects other biota and ecosystem processes. Here, we evaluate parts of those models relating to noisy miner habitat preferences and effects on bird assemblages using data from across the geographical range of the miner. Location Eastern Australia. Methods Avian-assemblage data were compiled for 2 128 survey transects (distributed over > 1.3 × 10 6 km 2 ) and were linked to variables reflecting productivity, local habitat structure and landscape context. Predictors were chosen based on the models, although detailed data for some variables were unavailable at such large scales. We used hierarchical Bayesian models that included observation models to account for different survey effort coupled with potentially nonlinear, spatially-explicit process models. Conclusions Noisy miner densities increased with proximity to forest edges (higher densities on forest edges and open sites), in low rainfall areas, and in vegetation dominated by trees with blade-shaped rather than needle-shaped leaves. The presence of noisy miners at even relatively small densities (> 0.6 individuals ha −1 ) depressed both species richness and the abundances of smaller ( 63 g) bird species. In areas with higher mean rainfall, the associations between noisy miners and small- and large-bird species were more negative and less positive, respectively.

Journal ArticleDOI
TL;DR: In this paper, the authors used monitoring data from the Balkan Peninsula to estimate changes in population size and extent of occurrence of Egyptian Vultures between 1980 and 2013, and quantified population trends in three countries (Bulgaria, Greece and the former Yugoslav Republic [FYR] of Macedonia) to assess whether population declines are similar within the Balkans range states.
Abstract: Summary The Egyptian Vulture has been classified as ‘Endangered’ due to a rapid population decline in India and long term declines in Europe and Africa. Although the species has been reported to be declining in Eastern Europe, no quantitative assessment of the magnitude or the causes for population declines are available. We used monitoring data from the Balkan Peninsula to estimate changes in population size and extent of occurrence of Egyptian Vultures between 1980 and 2013 . We quantified population trends in three countries (Bulgaria, Greece and the former Yugoslav Republic [FYR] of Macedonia) to assess whether population declines are similar within the Balkan range states. We found a rapid and consistent decline of the Egyptian Vulture population that was largely similar among the three countries ( �� = 0.940 in FYR of Macedonia, 0.951 in Bulgaria, 0.920 in Greece). As a consequence of population declines, the breeding range of Egyptian Vultures has contracted and the population in the Balkan Peninsula has fragmented into six subpopulations separated by more than 80 km. Population declines may be driven by factors such as poisoning, electrocution, direct persecution and changes in food availability which operate at large spatial scales and affect birds both on breeding grounds as well as during migration and wintering. Because the relative importance of threats to the survival of Egyptian Vultures are poorly understood, there is a critical need for research into causes of mortality and potential conservation actions that may halt and reverse population declines.

Journal ArticleDOI
TL;DR: Many advertised field-technician positions sound worthwhile, but have no or very low pay as mentioned in this paper, and these positions exclude minorities, parents, and other groups who cannot afford to work unpaid.
Abstract: Many advertised field-technician positions sound worthwhile, but have no or very low pay. Although these can be valuable experiences, not paying technicians for their work undermines their professionalism and the professionalism of science as a whole. These unpaid technician positions are available to only the privileged few; and the positions exclude minorities, parents, and other groups who cannot afford to work unpaid. By creating such positions, we prevent everyone, regardless of background, from having a chance to get the field experience they need, and this limits the diversity of voices in wildlife ecology and conservation. We recognize finances are often tight, and there is a long tradition of unpaid work, but these are not valid rationalizations for continuing this practice. Unpaid technicians and internships are bad for science, and the conservation of our natural world. We cannot afford to not pay our technicians. © 2015 The Wildlife Society.

Journal ArticleDOI
TL;DR: In this article, the authors studied the spatial and temporal patterns of marine space use by a critically endangered seabird: the Balearic shearwater Puffinus mauretanicus, using a suite of bio-logging systems, 67 foraging trips were recorded during incubation periods between 2011 and 2014 from one of the species' largest colonies.