scispace - formally typeset
Search or ask a question
Institution

Royal Swedish Academy of Sciences

NonprofitStockholm, Sweden
About: Royal Swedish Academy of Sciences is a nonprofit organization based out in Stockholm, Sweden. It is known for research contribution in the topics: Fermi Gamma-ray Space Telescope & Sustainability. The organization has 323 authors who have published 1147 publications receiving 142017 citations. The organization is also known as: Kungliga Vetenskapsakademien.


Papers
More filters
Journal ArticleDOI
23 Sep 2009-Nature
TL;DR: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.
Abstract: Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockstrom and colleagues.

8,837 citations

Journal ArticleDOI
13 Feb 2015-Science
TL;DR: An updated and extended analysis of the planetary boundary (PB) framework and identifies levels of anthropogenic perturbations below which the risk of destabilization of the Earth system (ES) is likely to remain low—a “safe operating space” for global societal development.
Abstract: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.

7,169 citations

Journal ArticleDOI
TL;DR: The resilience perspective is increasingly used as an approach for understanding the dynamics of social-ecological systems as mentioned in this paper, which emphasizes non-linear dynamics, thresholds, uncertainty and surprise, how periods of gradual change interplay with periods of rapid change and how such dynamics interact across temporal and spatial scales.
Abstract: The resilience perspective is increasingly used as an approach for understanding the dynamics of social–ecological systems. This article presents the origin of the resilience perspective and provides an overview of its development to date. With roots in one branch of ecology and the discovery of multiple basins of attraction in ecosystems in the 1960–1970s, it inspired social and environmental scientists to challenge the dominant stable equilibrium view. The resilience approach emphasizes non-linear dynamics, thresholds, uncertainty and surprise, how periods of gradual change interplay with periods of rapid change and how such dynamics interact across temporal and spatial scales. The history was dominated by empirical observations of ecosystem dynamics interpreted in mathematical models, developing into the adaptive management approach for responding to ecosystem change. Serious attempts to integrate the social dimension is currently taking place in resilience work reflected in the large numbers of sciences involved in explorative studies and new discoveries of linked social–ecological systems. Recent advances include understanding of social processes like, social learning and social memory, mental models and knowledge–system integration, visioning and scenario building, leadership, agents and actor groups, social networks, institutional and organizational inertia and change, adaptive capacity, transformability and systems of adaptive governance that allow for management of essential ecosystem services.

4,899 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new approach to global sustainability in which they define planetary boundaries within which they expect that humanity can operate safely. But the proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development.
Abstract: Anthropogenic pressures on the Earth System have reached a scale where abrupt global environmental change can no longer be excluded. We propose a new approach to global sustainability in which we define planetary boundaries within which we expect that humanity can operate safely. Transgressing one or more planetary boundaries may be deleterious or even catastrophic due to the risk of crossing thresholds that will trigger non-linear, abrupt environmental change within continental- to planetary-scale systems. We have identified nine planetary boundaries and, drawing upon current scientific understanding, we propose quantifications for seven of them. These seven are climate change (CO2 concentration in the atmosphere <350 ppm and/or a maximum change of +1 W m-2 in radiative forcing); ocean acidification (mean surface seawater saturation state with respect to aragonite ≥ 80% of pre-industrial levels); stratospheric ozone (<5% reduction in O3 concentration from pre-industrial level of 290 Dobson Units); biogeochemical nitrogen (N) cycle (limit industrial and agricultural fixation of N2 to 35 Tg N yr-1) and phosphorus (P) cycle (annual P inflow to oceans not to exceed 10 times the natural background weathering of P); global freshwater use (<4000 km3 yr-1 of consumptive use of runoff resources); land system change (<15% of the ice-free land surface under cropland); and the rate at which biological diversity is lost (annual rate of <10 extinctions per million species). The two additional planetary boundaries for which we have not yet been able to determine a boundary level are chemical pollution and atmospheric aerosol loading. We estimate that humanity has already transgressed three planetary boundaries: for climate change, rate of biodiversity loss, and changes to the global nitrogen cycle. Planetary boundaries are interdependent, because transgressing one may both shift the position of other boundaries or cause them to be transgressed. The social impacts of transgressing boundaries will be a function of the social-ecological resilience of the affected societies. Our proposed boundaries are rough, first estimates only, surrounded by large uncertainties and knowledge gaps. Filling these gaps will require major advancements in Earth System and resilience science. The proposed concept of "planetary boundaries" lays the groundwork for shifting our approach to governance and management, away from the essentially sectoral analyses of limits to growth aimed at minimizing negative externalities, toward the estimation of the safe space for human development. Planetary boundaries define, as it were, the boundaries of the "planetary playing field" for humanity if we want to be sure of avoiding major human-induced environmental change on a global scale.

4,771 citations

Journal ArticleDOI
TL;DR: Food in the Anthropocene : the EAT-Lancet Commission on healthy diets from sustainable food systems focuses on meat, fish, vegetables and fruit as sources of protein.

4,710 citations


Authors

Showing all 327 results

NameH-indexPapersCitations
Kaj Blennow1601845116237
David Tilman158340149473
Jan Conrad14182671445
Carl Folke133360125990
Stephen R. Carpenter131464109624
Simon A. Levin12561473620
Kenneth J. Arrow113411111221
Paul R. Ehrlich11348955175
Göran K. Hansson10741456595
Bertil B. Fredholm10151443752
Stephen Polasky9935459148
Gretchen C. Daily9625656204
Staffan Normark9628929787
Lena Claesson-Welsh9426636341
Bengt Herbert Kasemo8947335192
Network Information
Related Institutions (5)
Aarhus University
93.5K papers, 3.4M citations

84% related

University of Copenhagen
149.7K papers, 5.9M citations

83% related

University of Helsinki
113.1K papers, 4.6M citations

83% related

Spanish National Research Council
220.4K papers, 7.6M citations

82% related

University of Groningen
69.1K papers, 2.9M citations

81% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20227
202160
202053
201950
201842
201750