scispace - formally typeset
Search or ask a question

Showing papers by "Russian Academy of Sciences published in 2009"


Journal ArticleDOI
TL;DR: In this article, the authors reported a new estimate of the carbon pools in soils of the northern permafrost region, including deeper layers and pools not accounted for in previous analyses.
Abstract: of all soils in the northern permafrost region is approximately 18,782 � 10 3 km 2 ,o r approximately 16% of the global soil area. In the northern permafrost region, organic soils (peatlands) and cryoturbated permafrost-affected mineral soils have the highest mean soil organic carbon contents (32.2–69.6 kg m �2 ). Here we report a new estimate of the carbon pools in soils of the northern permafrost region, including deeper layers and pools not accounted for in previous analyses. Carbon pools were estimated to be 191.29 Pg for the 0–30 cm depth, 495.80 Pg for the 0–100 cm depth, and 1024.00 Pg for the 0–300 cm depth. Our estimate for the first meter of soil alone is about double that reported for this region in previous analyses. Carbon pools in layers deeper than 300 cm were estimated to be 407 Pg in yedoma deposits and 241 Pg in deltaic deposits. In total, the northern permafrost region contains approximately 1672 Pg of organic carbon, of which approximately 1466 Pg, or 88%, occurs in perennially frozen soils and deposits. This 1672 Pg of organic carbon would account for approximately 50% of the estimated global belowground organic carbon pool.

2,130 citations


Journal ArticleDOI
TL;DR: In this paper, the average trace element contents in the World black shales and coals and coal Clarke values are presented, based on comprehensive calculations using very large amount of information (thousands analyses of black shale, coals, and coal ashes for trace elements).

1,049 citations


Journal ArticleDOI
TL;DR: The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments as discussed by the authors.
Abstract: Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sedimenthosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow goldarsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to highgrade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment- hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow.

726 citations


Journal ArticleDOI
08 May 2009-Science
TL;DR: The synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB are described.
Abstract: New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB.

639 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that heating of Tunguska Basin sediments by ascending magma played a key role in triggering the end-Permian environmental crisis.

554 citations


Journal ArticleDOI
TL;DR: The latest advances in the understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent 2-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm.
Abstract: Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent 2-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm.

536 citations


Journal ArticleDOI
TL;DR: Charge transport through symmetric tetraphenyl and non-symmetric diblock dipyrimidinyldiphenyl molecules covalently bound to two electrodes is studied to study diode behaviour in single molecules.
Abstract: In the molecular electronics field it is highly desirable to engineer the structure of molecules to achieve specific functions. In particular, diode (or rectification) behaviour in single molecules is an attractive device function. Here we study charge transport through symmetric tetraphenyl and non-symmetric diblock dipyrimidinyldiphenyl molecules covalently bound to two electrodes. The orientation of the diblock is controlled through a selective deprotection strategy, and a method in which the electrode-electrode distance is modulated unambiguously determines the current-voltage characteristics of the single-molecule device. The diblock molecule exhibits pronounced rectification behaviour compared with its homologous symmetric block, with current flowing from the dipyrimidinyl to the diphenyl moieties. This behaviour is interpreted in terms of localization of the wave function of the hole ground state at one end of the diblock under the applied field. At large forward current, the molecular diode becomes unstable and quantum point contacts between the electrodes form.

499 citations


Journal ArticleDOI
TL;DR: Changes in behavior, morphology and physiology that appeared in the fox during its selection for tameability were similar to those observed in the domestic dog, and the developmental, genetic and possible molecular genetic mechanisms underlying these changes are discussed.
Abstract: We review the evolution of domestic animals, emphasizing the effect of the earliest steps of domestication on its course. Using the first domesticated species, the dog (Canis familiaris), for illustration, we describe the evolutionary peculiarities during the historical domestication, such as the high level and wide range of diversity. We suggest that the process of earliest domestication via unconscious and later conscious selection of human-defined behavioral traits may accelerate phenotypic variations. The review is based on the results of a long-term experiment designed to reproduce early mammalian domestication in the silver fox (Vulpes vulpes) selected for tameability or amenability to domestication. We describe changes in behavior, morphology and physiology that appeared in the fox during its selection for tameability, which were similar to those observed in the domestic dog. Based on the data of the fox experiment and survey of relevant data, we discuss the developmental, genetic and possible molecular genetic mechanisms underlying these changes. We ascribe the causative role in evolutionary transformation of domestic animals to the selection for behavior and to the neurospecific regulatory genes it affects.

476 citations


Journal ArticleDOI
TL;DR: This work designed a strategy to clone the Nb repertoire of an immunized dromedary and to select the Nbs with specificity for the authors' target antigens, which are well produced in bacteria, are very stable and highly soluble, and bind their cognate antigen with high affinity and specificity.

462 citations



Journal ArticleDOI
08 May 2009-PLOS ONE
TL;DR: This analysis revealed that the genetic structure of the European population correlates closely with geography, and allows the creation of a comprehensive European genetic map that will greatly facilitate inter-population genetic studies including genome wide association studies (GWAS).
Abstract: Using principal component (PC) analysis, we studied the genetic constitution of 3,112 individuals from Europe as portrayed by more than 270,000 single nucleotide polymorphisms (SNPs) genotyped with the Illumina Infinium platform. In cohorts where the sample size was >100, one hundred randomly chosen samples were used for analysis to minimize the sample size effect, resulting in a total of 1,564 samples. This analysis revealed that the genetic structure of the European population correlates closely with geography. The first two PCs highlight the genetic diversity corresponding to the northwest to southeast gradient and position the populations according to their approximate geographic origin. The resulting genetic map forms a triangular structure with a) Finland, b) the Baltic region, Poland and Western Russia, and c) Italy as its vertexes, and with d) Central- and Western Europe in its centre. Inter- and intra- population genetic differences were quantified by the inflation factor lambda (lambda) (ranging from 1.00 to 4.21), fixation index (F(st)) (ranging from 0.000 to 0.023), and by the number of markers exhibiting significant allele frequency differences in pair-wise population comparisons. The estimated lambda was used to assess the real diminishing impact to association statistics when two distinct populations are merged directly in an analysis. When the PC analysis was confined to the 1,019 Estonian individuals (0.1% of the Estonian population), a fine structure emerged that correlated with the geography of individual counties. With at least two cohorts available from several countries, genetic substructures were investigated in Czech, Finnish, German, Estonian and Italian populations. Together with previously published data, our results allow the creation of a comprehensive European genetic map that will greatly facilitate inter-population genetic studies including genome wide association studies (GWAS).

Journal ArticleDOI
TL;DR: A model function f(x"1,...,x"n) defined in the unit hypercube H^n with Lebesque measure dx=dx"1...dx"n is considered and global sensitivity indices provide adequate estimates for the influence of individual factors x"i or groups of such factors.

Journal ArticleDOI
TL;DR: In mammals, the effect of SkQs on aging was accompanied by inhibition of development of such age-related diseases and traits as cataract, retinopathy, glaucoma, balding, canities, osteoporosis, involution of the thymus, hypothermia, torpor, peroxidation of lipids and proteins, etc.

Journal ArticleDOI
TL;DR: In this article, the authors present a simple theoretical description of the ideal protocol and comment on the impact of a non-ideal realization on its quantum nature, and elaborate on traditional photon-echo experiments as a test-bed for quantum state storage.
Abstract: Many applications of quantum communication crucially depend on reversible transfer of quantum states between light and matter. Motivated by rapid recent developments in theory and experiment, we review research related to quantum memory based on a photon-echo approach in solid state material with emphasis on use in a quantum repeater. After introducing quantum communication, the quantum repeater concept, and properties of a quantum memory required to be useful in a quantum repeater, we describe the historical development from spin echoes, discovered in 1950, to photon-echo quantum memory. We present a simple theoretical description of the ideal protocol, and comment on the impact of a non-ideal realization on its quantum nature. We extensively discuss rare-earth-ion doped crystals and glasses as material candidates, elaborate on traditional photon-echo experiments as a test-bed for quantum state storage, and describe the current state-of-the-art of photon-echo quantum memory. Finally, we give a brief outlook on current research.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the consistency of Hořava's proposal for a theory of quantum gravity from the low energy perspective and uncovered the additional scalar degree of freedom arising from the explicit breaking of the general covariance and study its properties.
Abstract: We address the consistency of Hořava's proposal for a theory of quantum gravity from the low-energy perspective. We uncover the additional scalar degree of freedom arising from the explicit breaking of the general covariance and study its properties. The analysis is performed both in the original formulation of the theory and in the Stuckelberg picture. A peculiarity of the new mode is that it satisfies an equation of motion that is of first order in time derivatives. At linear level the mode is manifest only around spatially inhomogeneous and time-dependent backgrounds. We find two serious problems associated with this mode. First, the mode develops very fast exponential instabilities at short distances. Second, it becomes strongly coupled at an extremely low cutoff scale. We also discuss the ``projectable'' version of Hořava's proposal and argue that this version can be understood as a certain limit of the ghost condensate model. The theory is still problematic since the additional field generically forms caustics and, again, has a very low strong coupling scale. We clarify some subtleties that arise in the application of the Stuckelberg formalism to Hořava's model due to its non-relativistic nature.

Journal ArticleDOI
TL;DR: A new scheme is proposed which allows us to obtain large density ratio and to reproduce the coexistence curve with high accuracy and the spurious currents at vapor-liquid interface are also greatly reduced.
Abstract: We investigate the use of various equations of state (EOS) in the single-component multiphase lattice Boltzmann model. Several EOS are explored: van der Waals, Carnahan-Starling and Kaplun-Meshalkin EOS [A.B. Kaplun, A.B. Meshalkin, Thermodynamic validation of the form of unified equation of state for liquid and gas, High Temperature 41 (3) (2003) 319-326]. The last one was modified in order to obtain the correct critical point. The Carnahan-Starling and modified Kaplun-Meshalkin EOS are in better agreement with the experimental data on coexistence curves than the van der Waals EOS. It is shown that the approximation of the gradient of special potential is crucial to obtain the correct coexistence curve, especially its low-density part. The correct method of incorporating the body forces into the lattice Boltzmann model is also very important. We propose a new scheme which allows us to obtain large density ratio (up to 10^9 in the stationary case) and to reproduce the coexistence curve with high accuracy. The spurious currents at vapor-liquid interface are also greatly reduced.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the geodynamical and geophysical environments which are necessary for planets where plate tectonics remain active over geological time scales and for planets which evolve to one-plate planets.
Abstract: This work reviews factors which are important for the evolution of habitable Earth-like planets such as the effects of the host star dependent radiation and particle fluxes on the evolution of atmospheres and initial water inventories. We discuss the geodynamical and geophysical environments which are necessary for planets where plate tectonics remain active over geological time scales and for planets which evolve to one-plate planets. The discoveries of methane–ethane surface lakes on Saturn’s large moon Titan, subsurface water oceans or reservoirs inside the moons of Solar System gas giants such as Europa, Ganymede, Titan and Enceladus and more than 335 exoplanets, indicate that the classical definition of the habitable zone concept neglects more exotic habitats and may fail to be adequate for stars which are different from our Sun. A classification of four habitat types is proposed. Class I habitats represent bodies on which stellar and geophysical conditions allow Earth-analog planets to evolve so that complex multi-cellular life forms may originate. Class II habitats includes bodies on which life may evolve but due to stellar and geophysical conditions that are different from the class I habitats, the planets rather evolve toward Venus- or Mars-type worlds where complex life-forms may not develop. Class III habitats are planetary bodies where subsurface water oceans exist which interact directly with a silicate-rich core, while class IV habitats have liquid water layers between two ice layers, or liquids above ice. Furthermore, we discuss from the present viewpoint how life may have originated on early Earth, the possibilities that life may evolve on such Earth-like bodies and how future space missions may discover manifestations of extraterrestrial life.

Journal ArticleDOI
TL;DR: Using time-resolved single-shot pump-probe microscopy the mechanism and the time scale of all-optical magnetization reversal by a single circularly polarized 100 fs laser pulse are unveiled and it is demonstrated that for a 5 microm domain the magnetic information can be recorded and readout within 30 ps, which is the fastest "write-read" event demonstrated for magnetic recording so far.
Abstract: Using time-resolved single-shot pump-probe microscopy we unveil the mechanism and the time scale of all-optical magnetization reversal by a single circularly polarized 100 fs laser pulse. We demonstrate that the reversal has a linear character, i.e., does not involve precession but occurs via a strongly nonequilibrium state. Calculations show that the reversal time which can be achieved via this mechanism is within 10 ps for a 30 nm domain. Using two single subpicosecond laser pulses we demonstrate that for a 5 microm domain the magnetic information can be recorded and readout within 30 ps, which is the fastest "write-read" event demonstrated for magnetic recording so far.

Journal ArticleDOI
TL;DR: In this paper, the preparation of 27 different derivatives of C60 and C70 fullerenes possessing various aryl (heteroaryl) and/or alkyl groups that are appended to the fullerene cage via a cyclopropane moiety and their use in bulk heterojunction polymer solar cells is reported.
Abstract: The preparation of 27 different derivatives of C60 and C70 fullerenes possessing various aryl (heteroaryl) and/or alkyl groups that are appended to the fullerene cage via a cyclopropane moiety and their use in bulk heterojunction polymer solar cells is reported. It is shown that even slight variations in the molecular structure of a compound can cause a significant change in its physical properties, in particular its solubility in organic solvents. Furthermore, the solubility of a fullerene derivative strongly affects the morphology of its composite with poly(3-hexylthiophene), which is commonly used as active material in bulk heterojunction organic solar cells. As a consequence, the solar cell parameters strongly depend on the structure and the properties of the fullerene-based material. The power conversion efficiencies for solar cells comprising these fullerene derivatives range from negligibly low (0.02%) to considerably high (4.1%) values. The analysis of extensive sets of experimental data reveals a general dependence of all solar cell parameters on the solubility of the fullerene derivative used as acceptor component in the photoactive layer of an organic solar cell. It is concluded that the best material combinations are those where donor and acceptor components are of similar and sufficiently high solubility in the solvent used for the deposition of the active layer.

Journal ArticleDOI
TL;DR: In this paper, a review of the physical mechanisms responsible for the generation of long quasi-periodic pulsations (QPPs) is presented, with the focus on QPPs with the periods longer than one second.
Abstract: Quasi-periodic pulsations (QPP) are a common feature of flaring energy releases in the solar atmosphere, observed in all bands, from radio to hard X-ray. In this review we concentrate on QPP with the periods longer than one second. Physical mechanisms responsible for the generation of long QPP split into two groups: “load/unload” mechanisms and MHD oscillations. Load/unload mechanisms are repetitive regimes of flaring energy releases by magnetic reconnection or by other means. MHD oscillations can affect all elements of the flaring emission generation: triggering of reconnection and modulation of its rate, acceleration and dynamics of non-thermal electrons, and physical conditions in the emitting plasmas. In the case of MHD oscillations, the periodicity of QPP is determined either by the presence of some resonances, e.g. standing modes of plasma structures, or by wave dispersion. Periods and other parameters of QPP are linked with properties of flaring plasmas and their morphology. Observational investigation of the QPP generation mechanisms based upon the use of spatial information, broadband spectral coverage and multi-periodicity is discussed.

Journal ArticleDOI
TL;DR: This review describes some of the most characteristic features of the IDP conformational behavior and the unique response of IDPs to changes in their environment.
Abstract: Intrinsically disordered proteins (IDPs) differ from “normal” ordered proteins at several levels, structural, functional and conformational. Amino acid biases characteristic for IDPs determine their structural variability and lack of rigid well-folded structure. This structural plasticity is necessary for the unique functional repertoire of IDPs, which is complementary to the catalytic activities of ordered proteins. Amino acid biases also drive atypical responses of IDPs to changes in their environment. The conformational behavior of IDPs is characterized by the low cooperativity (or the complete lack thereof) of the denaturant-induced unfolding, lack of the measurable excess heat absorption peak(s) characteristic for the melting of ordered proteins, “turned out” response to heat and changes in pH, the ability to gain structure in the presence of various counter ions, osmolytes, membranes and binding partners, and by the unique response to macromolecular crowding. This review describes some of the most characteristic features of the IDP conformational behavior and the unique response of IDPs to changes in their environment.

Journal ArticleDOI
TL;DR: This is the first calculation of complete three-loop vertex corrections within massless perturbative quantum chromodynamics and provides building blocks for many third-order cross sections.
Abstract: We compute the form factors of the photon-quark-anti-quark vertex and the effective vertex of a Higgs-boson and two gluons to three-loop order within massless perturbative quantum chromodynamics. These results provide building blocks for many third-order cross sections. Furthermore, this is the first calculation of complete three-loop vertex corrections.

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of homoleptic transition metal complexes of bulky bidentate N-aryl-o-iminoquinonato type ligands involving comparison with o-quinonato analogues is presented.

Journal ArticleDOI
TL;DR: It is demonstrated that cross regulation between the gap genes causes their expression to approach dynamical attractors, reducing initial variation and providing a robust output, and more generally it is shown that the complex multigenic phenomenon of canalization can be understood at a quantitative and predictive level by the application of a precise dynamical model.
Abstract: Developing embryos exhibit a robust capability to reduce phenotypic variations that occur naturally or as a result of experimental manipulation. This reduction in variation occurs by an epigenetic mechanism called canalization, a phenomenon which has resisted understanding because of a lack of necessary molecular data and of appropriate gene regulation models. In recent years, quantitative gene expression data have become available for the segment determination process in the Drosophila blastoderm, revealing a specific instance of canalization. These data show that the variation of the zygotic segmentation gene expression patterns is markedly reduced compared to earlier levels by the time gastrulation begins, and this variation is significantly lower than the variation of the maternal protein gradient Bicoid. We used a predictive dynamical model of gene regulation to study the effect of Bicoid variation on the downstream gap genes. The model correctly predicts the reduced variation of the gap gene expression patterns and allows the characterization of the canalizing mechanism. We show that the canalization is the result of specific regulatory interactions among the zygotic gap genes. We demonstrate the validity of this explanation by showing that variation is increased in embryos mutant for two gap genes, Kruppel and knirps, disproving competing proposals that canalization is due to an undiscovered morphogen, or that it does not take place at all. In an accompanying article in PLoS Computational Biology (doi:10.1371/journal.pcbi.1000303), we show that cross regulation between the gap genes causes their expression to approach dynamical attractors, reducing initial variation and providing a robust output. These results demonstrate that the Bicoid gradient is not sufficient to produce gap gene borders having the low variance observed, and instead this low variance is generated by gap gene cross regulation. More generally, we show that the complex multigenic phenomenon of canalization can be understood at a quantitative and predictive level by the application of a precise dynamical model.

Journal ArticleDOI
27 Nov 2009-Science
TL;DR: This “simple” organism makes extensive use of noncoding RNAs and has exon- and intron-like structure within transcriptional operons that allows complex gene regulation resembling that of eukaryotes, and Reconstruction of a bacterial metabolic network reveals strategies for metabolic control with a genome of reduced size.
Abstract: To understand basic principles of bacterial metabolism organization and regulation, but also the impact of genome size, we systematically studied one of the smallest bacteria, Mycoplasma pneumoniae. A manually curated metabolic network of 189 reactions catalyzed by 129 enzymes allowed the design of a defined, minimal medium with 19 essential nutrients. More than 1300 growth curves were recorded in the presence of various nutrient concentrations. Measurements of biomass indicators, metabolites, and 13C-glucose experiments provided information on directionality, fluxes, and energetics; integration with transcription profiling enabled the global analysis of metabolic regulation. Compared with more complex bacteria, the M. pneumoniae metabolic network has a more linear topology and contains a higher fraction of multifunctional enzymes; general features such as metabolite concentrations, cellular energetics, adaptability, and global gene expression responses are similar, however.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate an inertia-based spin switching mechanism in antiferromagnets, where the exchange interaction between the spins leads to an inertial behavior, such that only a short "kick" is required to transfer sufficient momentum to the spin system for it to reorient.
Abstract: Magnetic switching is typically accomplished by using a driving field that stays on until the magnetization is rotated to its final position. An experiment demonstrates that, in antiferromagnets, inertial effects can be harnessed, such that only a short ‘kick’ is required to transfer sufficient momentum to the spin system for it to reorient. It is generally accepted that the fastest way to reorient magnetization is through precessional motion in an external magnetic field1,2,3,4,5,6,7. In ferromagnets, the application of a magnetic field instantaneously sets spins in motion and, in contrast to the inertial motion of massive bodies, the magnetization can climb over a potential barrier only during the action of a magnetic-field pulse. Here we demonstrate a fundamentally different scenario of spin switching in antiferromagnets, where the exchange interaction between the spins leads to an inertial behaviour. Although the spin orientation hardly changes during the action of an optically generated strong magnetic-field pulse of 100 fs duration, this pulse transfers sufficient momentum to the spin system to overcome the potential barrier and reorient into a new metastable state, long after the action of the stimulus. Such an inertia-based mechanism of spin switching should offer new opportunities for ultrafast recording and processing of magnetically stored information.

Journal ArticleDOI
TL;DR: Unfoldomics of human diseases utilizes unrivaled bioinformatics and experimental techniques, paves the road for better understanding of human Diseases, their pathogenesis and molecular mechanisms, and helps develop new strategies for the analysis of disease-related proteins.
Abstract: Background Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) lack stable tertiary and/or secondary structure yet fulfills key biological functions. The recent recognition of IDPs and IDRs is leading to an entire field aimed at their systematic structural characterization and at determination of their mechanisms of action. Bioinformatics studies showed that IDPs and IDRs are highly abundant in different proteomes and carry out mostly regulatory functions related to molecular recognition and signal transduction. These activities complement the functions of structured proteins. IDPs and IDRs were shown to participate in both one-to-many and many-to-one signaling. Alternative splicing and posttranslational modifications are frequently used to tune the IDP functionality. Several individual IDPs were shown to be associated with human diseases, such as cancer, cardiovascular disease, amyloidoses, diabetes, neurodegenerative diseases, and others. This raises questions regarding the involvement of IDPs and IDRs in various diseases.

Journal ArticleDOI
G. Agakichiev1, C. Agodi2, H. Alvarez-Pol3, E. V. Atkin  +214 moreInstitutions (17)
TL;DR: HADES as discussed by the authors is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion-induced collisions, which includes a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers, and a multiplicity and electron trigger array for additional electron hadron discrimination.
Abstract: HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion-induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18° to 85°, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range (0.1 < p < 1.0 GeV/c). This paper describes the main features and the performance of the detector system. © Societa Italiana di Fisica / Springer-Verlag 2009.

Journal ArticleDOI
TL;DR: For the moist soils other than those whose dielectric data were used for its development, this model was shown to demonstrate noticeably smaller error of dielectrics predictions, with clay percentage being the only input parameter, as compared with the error observed in the case of the SMDM.
Abstract: In this paper, the error of dielectric predictions for moist soils was estimated, regarding the semiempirical mixing dielectric model (SMDM) developed by Dobson , which is a universally recognized one, and the generalized refractive mixing dielectric model (GRMDM) recently elaborated by Mironov The analysis is based on the measured dielectric data presented in by Curtis and the papers of Dobson These data cover a broad variety of grain-size distributions observed in 15 soils and the frequency range from 45 MHz to 26.5 GHz, with the temperature being from 20 degC to 22 degC. The SMDM was found to deliver predictions with substantially larger error for the soils, whose dielectric data were not used for its development, while the GRMDM ensured dielectric predictions for all the soils analyzed with as small error as the SMDM did in the case of the soils that it was based on. To secure the same convenience in application of the GRMDM, which the SMDM possesses, the spectroscopic parameters of that model were correlated with the clay percentages of the respective soils. As a result, a new mineralogy-based dielectric model was developed. For the moist soils other than those whose dielectric data were used for its development, this model was shown to demonstrate noticeably smaller error of dielectric predictions, with clay percentage being the only input parameter, as compared with the error observed in the case of the SMDM.

Journal ArticleDOI
TL;DR: In this paper, the results of investigations of Bi-doped fiber lasers covering a wavelength range of 1150 -1550 nm are presented. And the luminescence properties of various Bi-Doped glasses are discussed.
Abstract: The recent results on the new laser material – Bi-doped glasses and optical fibers are reviewed. First, luminescence properties of various Bi-doped glasses are discussed. At last the results of investigations of Bi-doped fiber lasers covering a wavelength range of 1150 – 1550 nm are presented.