scispace - formally typeset
Search or ask a question

Showing papers by "Rutgers University published in 2012"


Journal ArticleDOI
TL;DR: In this paper, results from searches for the standard model Higgs boson in proton-proton collisions at 7 and 8 TeV in the CMS experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.8 standard deviations.

8,857 citations


Journal ArticleDOI
TL;DR: These guidelines are presented for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.

4,316 citations


Journal ArticleDOI
TL;DR: Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation.
Abstract: Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

4,116 citations


Journal ArticleDOI
TL;DR: High-density recordings of field activity in animals and subdural grid recordings in humans can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase the understanding of how these processes contribute to the extracellular signal.
Abstract: Neuronal activity in the brain gives rise to transmembrane currents that can be measured in the extracellular medium. Although the major contributor of the extracellular signal is the synaptic transmembrane current, other sources — including Na+ and Ca2+ spikes, ionic fluxes through voltage- and ligand-gated channels, and intrinsic membrane oscillations — can substantially shape the extracellular field. High-density recordings of field activity in animals and subdural grid recordings in humans, combined with recently developed data processing tools and computational modelling, can provide insight into the cooperative behaviour of neurons, their average synaptic input and their spiking output, and can increase our understanding of how these processes contribute to the extracellular signal.

3,366 citations


Journal ArticleDOI
TL;DR: Longer diabetes duration and poorer glycemic and blood pressure control are strongly associated with DR, and these data highlight the substantial worldwide public health burden of DR and the importance of modifiable risk factors in its occurrence.
Abstract: OBJECTIVE To examine the global prevalence and major risk factors for diabetic retinopathy (DR) and vision-threatening diabetic retinopathy (VTDR) among people with diabetes. RESEARCH DESIGN AND METHODS A pooled analysis using individual participant data from population-based studies around the world was performed. A systematic literature review was conducted to identify all population-based studies in general populations or individuals with diabetes who had ascertained DR from retinal photographs. Studies provided data for DR end points, including any DR, proliferative DR, diabetic macular edema, and VTDR, and also major systemic risk factors. Pooled prevalence estimates were directly age-standardized to the 2010 World Diabetes Population aged 20–79 years. RESULTS A total of 35 studies (1980–2008) provided data from 22,896 individuals with diabetes. The overall prevalence was 34.6% (95% CI 34.5–34.8) for any DR, 6.96% (6.87–7.04) for proliferative DR, 6.81% (6.74–6.89) for diabetic macular edema, and 10.2% (10.1–10.3) for VTDR. All DR prevalence end points increased with diabetes duration, hemoglobin A 1c , and blood pressure levels and were higher in people with type 1 compared with type 2 diabetes. CONCLUSIONS There are approximately 93 million people with DR, 17 million with proliferative DR, 21 million with diabetic macular edema, and 28 million with VTDR worldwide. Longer diabetes duration and poorer glycemic and blood pressure control are strongly associated with DR. These data highlight the substantial worldwide public health burden of DR and the importance of modifiable risk factors in its occurrence. This study is limited by data pooled from studies at different time points, with different methodologies and population characteristics.

3,282 citations


Journal ArticleDOI
TL;DR: The data show that exosome production, transfer and education of bone marrow cells supports tumor growth and metastasis, has prognostic value and offers promise for new therapeutic directions in the metastatic process.
Abstract: Tumor-derived exosomes are emerging mediators of tumorigenesis. We explored the function of melanoma-derived exosomes in the formation of primary tumors and metastases in mice and human subjects. Exosomes from highly metastatic melanomas increased the metastatic behavior of primary tumors by permanently 'educating' bone marrow progenitors through the receptor tyrosine kinase MET. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites and reprogrammed bone marrow progenitors toward a pro-vasculogenic phenotype that was positive for c-Kit, the receptor tyrosine kinase Tie2 and Met. Reducing Met expression in exosomes diminished the pro-metastatic behavior of bone marrow cells. Notably, MET expression was elevated in circulating CD45(-)C-KIT(low/+)TIE2(+) bone marrow progenitors from individuals with metastatic melanoma. RAB1A, RAB5B, RAB7 and RAB27A, regulators of membrane trafficking and exosome formation, were highly expressed in melanoma cells. Rab27A RNA interference decreased exosome production, preventing bone marrow education and reducing, tumor growth and metastasis. In addition, we identified an exosome-specific melanoma signature with prognostic and therapeutic potential comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. Our data show that exosome production, transfer and education of bone marrow cells supports tumor growth and metastasis, has prognostic value and offers promise for new therapeutic directions in the metastatic process.

3,076 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a survey of the use of Wannier functions in the context of electronic-structure theory, including their applications in analyzing the nature of chemical bonding, or as a local probe of phenomena related to electric polarization and orbital magnetization.
Abstract: The electronic ground state of a periodic system is usually described in terms of extended Bloch orbitals, but an alternative representation in terms of localized "Wannier functions" was introduced by Gregory Wannier in 1937. The connection between the Bloch and Wannier representations is realized by families of transformations in a continuous space of unitary matrices, carrying a large degree of arbitrariness. Since 1997, methods have been developed that allow one to iteratively transform the extended Bloch orbitals of a first-principles calculation into a unique set of maximally localized Wannier functions, accomplishing the solid-state equivalent of constructing localized molecular orbitals, or "Boys orbitals" as previously known from the chemistry literature. These developments are reviewed here, and a survey of the applications of these methods is presented. This latter includes a description of their use in analyzing the nature of chemical bonding, or as a local probe of phenomena related to electric polarization and orbital magnetization. Wannier interpolation schemes are also reviewed, by which quantities computed on a coarse reciprocal-space mesh can be used to interpolate onto much finer meshes at low cost, and applications in which Wannier functions are used as efficient basis functions are discussed. Finally the construction and use of Wannier functions outside the context of electronic-structure theory is presented, for cases that include phonon excitations, photonic crystals, and cold-atom optical lattices.

2,217 citations


Journal ArticleDOI
TL;DR: The cellular and synaptic mechanisms underlying gamma oscillations are reviewed and empirical questions and controversial conceptual issues are outlined, finding that gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition.
Abstract: Gamma rhythms are commonly observed in many brain regions during both waking and sleep states, yet their functions and mechanisms remain a matter of debate. Here we review the cellular and synaptic mechanisms underlying gamma oscillations and outline empirical questions and controversial conceptual issues. Our main points are as follows: First, gamma-band rhythmogenesis is inextricably tied to perisomatic inhibition. Second, gamma oscillations are short-lived and typically emerge from the coordinated interaction of excitation and inhibition, which can be detected as local field potentials. Third, gamma rhythm typically concurs with irregular firing of single neurons, and the network frequency of gamma oscillations varies extensively depending on the underlying mechanism. To document gamma oscillations, efforts should be made to distinguish them from mere increases of gamma-band power and/or increased spiking activity. Fourth, the magnitude of gamma oscillation is modulated by slower rhythms. Such cross-frequency coupling may serve to couple active patches of cortical circuits. Because of their ubiquitous nature and strong correlation with the "operational modes" of local circuits, gamma oscillations continue to provide important clues about neuronal population dynamics in health and disease.

2,168 citations


Proceedings ArticleDOI
25 Mar 2012
TL;DR: A time-average age metric is employed for the performance evaluation of status update systems and the existence of an optimal rate at which a source must generate its information to keep its status as timely as possible at all its monitors is shown.
Abstract: Increasingly ubiquitous communication networks and connectivity via portable devices have engendered a host of applications in which sources, for example people and environmental sensors, send updates of their status to interested recipients. These applications desire status updates at the recipients to be as timely as possible; however, this is typically constrained by limited network resources. In this paper, we employ a time-average age metric for the performance evaluation of status update systems. We derive general methods for calculating the age metric that can be applied to a broad class of service systems. We apply these methods to queue-theoretic system abstractions consisting of a source, a service facility and monitors, with the model of the service facility (physical constraints) a given. The queue discipline of first-come-first-served (FCFS) is explored. We show the existence of an optimal rate at which a source must generate its information to keep its status as timely as possible at all its monitors. This rate differs from those that maximize utilization (throughput) or minimize status packet delivery delay. While our abstractions are simpler than their real-world counterparts, the insights obtained, we believe, are a useful starting point in understanding and designing systems that support real time status updates.

1,879 citations


Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: The sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy and transcriptomes of development and stress response and the proteome of the shell are reported, showing that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes.
Abstract: The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.

1,806 citations


Book
13 Nov 2012
TL;DR: In this article, the authors discuss the implications of patch dynamics for the Organization of Communities and the Functioning of Ecosystems in a patch-based setting and propose a patch dynamic setting.
Abstract: Introduction. Patch Dynamics in Nature. Adaptations of Plants and Animals in a Patch Dynamic Setting. Implications of Patch Dynamics for the Organization of Communities and the Functioning of Ecosystems. Synthesis.

Journal ArticleDOI
TL;DR: The authors examined the effects of three dimensions of HR systems (skillsenhancing, motivationenhancing and opportunity-enhancing) on the ability-motivation-opportunity model.
Abstract: Drawing on the ability-motivation-opportunity model, this meta-analysis examined the effects of three dimensions of HR systems—skills-enhancing, motivation-enhancing, and opportunity-enhancing—on p...

Journal ArticleDOI
TL;DR: Methods for preventing missing data and, failing that, dealing with data that are missing in clinical trials are reviewed.
Abstract: Missing data in clinical trials can have a major effect on the validity of the inferences that can be drawn from the trial. This article reviews methods for preventing missing data and, failing that, dealing with data that are missing.

Journal ArticleDOI
TL;DR: The composition of the microbiota in colorectal carcinoma is characterized using whole genome sequences from nine tumor/normal pairs and Fusobacterium sequences were enriched in carcinomas, confirmed by quantitative PCR and 16S rDNA sequence analysis of 95 carcinoma/normal DNA pairs.
Abstract: The tumor microenvironment of colorectal carcinoma is a complex community of genomically altered cancer cells, nonneoplastic cells, and a diverse collection of microorganisms. Each of these components may contribute to carcinogenesis; however, the role of the microbiota is the least well understood. We have characterized the composition of the microbiota in colorectal carcinoma using whole genome sequences from nine tumor/normal pairs. Fusobacterium sequences were enriched in carcinomas, confirmed by quantitative PCR and 16S rDNA sequence analysis of 95 carcinoma/normal DNA pairs, while the Bacteroidetes and Firmicutes phyla were depleted in tumors. Fusobacteria were also visualized within colorectal tumors using FISH. These findings reveal alterations in the colorectal cancer microbiota; however, the precise role of Fusobacteria in colorectal carcinoma pathogenesis requires further investigation.

Journal ArticleDOI
TL;DR: Cardiomyocyte-specific deletion of Top2b (encoding topoisomerase-IIβ) protects cardiomyocytes from doxorubicin-induced DNA double-strand breaks and transcriptome changes that are responsible for defective mitochondrial biogenesis and ROS formation.
Abstract: Doxorubicin is believed to cause dose-dependent cardiotoxicity through redox cycling and the generation of reactive oxygen species (ROS). Here we show that cardiomyocyte-specific deletion of Top2b (encoding topoisomerase-IIβ) protects cardiomyocytes from doxorubicin-induced DNA double-strand breaks and transcriptome changes that are responsible for defective mitochondrial biogenesis and ROS formation. Furthermore, cardiomyocyte-specific deletion of Top2b protects mice from the development of doxorubicin-induced progressive heart failure, suggesting that doxorubicin-induced cardiotoxicity is mediated by topoisomerase-IIβ in cardiomyocytes.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed daily fields of 500-hPa heights from the National Centers for Environmental Prediction Reanalysis over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with Arctic amplification and the relaxation of poleward thickness gradients.
Abstract: [1] Arctic amplification (AA) – the observed enhanced warming in high northern latitudes relative to the northern hemisphere – is evident in lower-tropospheric temperatures and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa heights from the National Centers for Environmental Prediction Reanalysis are analyzed over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with AA and the relaxation of poleward thickness gradients. Two effects are identified that each contribute to a slower eastward progression of Rossby waves in the upper-level flow: 1) weakened zonal winds, and 2) increased wave amplitude. These effects are particularly evident in autumn and winter consistent with sea-ice loss, but are also apparent in summer, possibly related to earlier snow melt on high-latitude land. Slower progression of upper-level waves would cause associated weather patterns in mid-latitudes to be more persistent, which may lead to an increased probability of extreme weather events that result from prolonged conditions, such as drought, flooding, cold spells, and heat waves.

Journal ArticleDOI
17 Feb 2012-Science
TL;DR: Functional and evolutionary differences between LoF-tolerant and recessive disease genes and a method for using these differences to prioritize candidate genes found in clinical sequencing studies are described.
Abstract: Genome-sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2951 putative LoF variants obtained from 185 human genomes to determine their true prevalence and properties. We estimate that human genomes typically contain ~100 genuine LoF variants with ~20 genes completely inactivated. We identify rare and likely deleterious LoF alleles, including 26 known and 21 predicted severe disease-causing variants, as well as common LoF variants in nonessential genes. We describe functional and evolutionary differences between LoF-tolerant and recessive disease genes and a method for using these differences to prioritize candidate genes found in clinical sequencing studies.

Journal ArticleDOI
TL;DR: The robust, consistent and inducible nature of the ChR2 mice represents a significant advance over previous lines, and the Arch-ER2 and eNpHR3.0 mice are to the authors' knowledge the first demonstration of successful conditional transgenic optogenetic silencing.
Abstract: Cell type-specific expression of optogenetic molecules allows temporally precise manipulation of targeted neuronal activity. Here we present a toolbox of four knock-in mouse lines engineered for strong, Cre-dependent expression of channelrhodopsins ChR2-tdTomato and ChR2-EYFP, halorhodopsin eNpHR3.0 and archaerhodopsin Arch-ER2. All four transgenes mediated Cre-dependent, robust activation or silencing of cortical pyramidal neurons in vitro and in vivo upon light stimulation, with ChR2-EYFP and Arch-ER2 demonstrating light sensitivity approaching that of in utero or virally transduced neurons. We further show specific photoactivation of parvalbumin-positive interneurons in behaving ChR2-EYFP reporter mice. The robust, consistent and inducible nature of our ChR2 mice represents a significant advance over previous lines, and the Arch-ER2 and eNpHR3.0 mice are to our knowledge the first demonstration of successful conditional transgenic optogenetic silencing. When combined with the hundreds of available Cre driver lines, this optimized toolbox of reporter mice will enable widespread investigations of neural circuit function with unprecedented reliability and accuracy.

DOI
21 Aug 2012
TL;DR: Self-regulation has been a hot topic in the field of health and social science as mentioned in this paper, with over 1,800 articles containing the keyword self-regulation published since 1990 alone.
Abstract: The past decade has been witness to an unprecedented growth in research on self-regulation. For example, of the 2,700-plus chapters, dissertations, and journal articles containing the keyword ‘self-regulation’ archived in PsychINFO, a well-used social science citation index, over 1,800 have been published since 1990 alone. It is not entirely clear whether this trend is due to a shift in the Zeitgeist or a change in semantics. Though we suspect that both are involved, the Zeitgeist in Western, industrialized nations is the likely driving force. The focus on the consumer, individual choice, and populist movements that emphasize individual and community empowerment create a context congenial to self-regulation models. These models represent efforts at maintaining a sense of individual autonomy in the face of technological changes and monopolistic, corporate conglomerates that are actually shrinking the individual’s options. Whereas the exact reason for the proliferation of self-regulation models is not clear, what is clear is that an increasing number of researchers and practitioners in the fields of health and social science are adopting concepts and principles from self-regulation theory to explain human behavior and promote behavior change in different contexts (see Boekaerts et al. (2000) for a discussion of applications in areas other than health).

Journal ArticleDOI
TL;DR: An integrated review of the neural mechanisms involved in contour grouping, border ownership, and figure-ground perception is concluded by evaluating what modern vision science has offered compared to traditional Gestalt psychology, whether the authors can speak of a Gestalt revival, and where the remaining limitations and challenges lie.
Abstract: In 1912, Max Wertheimer published his paper on phi motion, widely recognized as the start of Gestalt psychology. Because of its continued relevance in modern psychology, this centennial anniversary is an excellent opportunity to take stock of what Gestalt psychology has offered and how it has changed since its inception. We first introduce the key findings and ideas in the Berlin school of Gestalt psychology, and then briefly sketch its development, rise, and fall. Next, we discuss its empirical and conceptual problems, and indicate how they are addressed in contemporary research on perceptual grouping and figure–ground organization. In particular, we review the principles of grouping, both classical (e.g., proximity, similarity, common fate, good continuation, closure, symmetry, parallelism) and new (e.g., synchrony, common region, element and uniform connectedness), and their role in contour integration and completion. We then review classic and new image-based principles of figure–ground organization, how it is influenced by past experience and attention, and how it relates to shape and depth perception. After an integrated review of the neural mechanisms involved in contour grouping, border ownership, and figure–ground perception, we conclude by evaluating what modern vision science has offered compared to traditional Gestalt psychology, whether we can speak of a Gestalt revival, and where the remaining limitations and challenges lie. A better integration of this research tradition with the rest of vision science requires further progress regarding the conceptual and theoretical foundations of the Gestalt approach, which is the focus of a second review article.

Journal ArticleDOI
TL;DR: Public Participation in Scientific Research (PPSR) as discussed by the authors ) is a popular term for participatory action research and citizen science, and it has been widely used in the literature.
Abstract: Members of the public participate in scientific research in many different contexts, stemming from traditions as varied as participatory action research and citizen science. Particularly in conservation and natural resource management contexts, where research often addresses complex social-ecological questions, the emphasis on and nature of this participation can significantly affect both the way that projects are designed and the outcomes that projects achieve. We review and integrate recent work in these and other fields, which has converged such that we propose the term public participation in scientific research (PPSR) to discuss initiatives from diverse fields and traditions. We describe three predominant models of PPSR and call upon case studies suggesting that—regardless of the research context—project outcomes are influenced by (1) the degree of public participation in the research process and (2) the quality of public participation as negotiated during project design. To illustrate relationships between the quality of participation and outcomes, we offer a framework that considers how scientific and public interests are negotiated for project design toward multiple, integrated goals. We suggest that this framework and models, used in tandem, can support deliberate design of PPSR efforts that will enhance their outcomes for scientific research, individual participants, and social-ecological systems.

Journal ArticleDOI
TL;DR: The role of mitochondria in the delayed outcomes of ionization radiation is discussed, and different types of radiation vary in their linear energy transfer (LET) properties, and their effects on various aspects of mitochondrial physiology are discussed.

Journal ArticleDOI
TL;DR: The AABB developed this guideline to provide clinical recommendations about hemoglobin concentration thresholds and other clinical variables that trigger RBC transfusions in hemodynamically stable adults and children.
Abstract: Description: Although approximately 85 million units of red blood cells (RBCs) are transfused annually worldwide, transfusion practices vary widely The AABB (formerly, the American Association of Blood Banks) developed this guideline to provide clinical recommendations about hemoglobin concentration thresholds and other clinical variables that trigger RBC transfusions in hemodynamically stable adults and children Methods: These guidelines are based on a systematic review of randomized clinical trials evaluating transfusion thresholds We performed a literature search from 1950 to February 2011 with no language restrictions We examined the proportion of patients who received any RBC transfusion and the number of RBC units transfused to describe the effect of restrictive transfusion strategies on RBC use To determine the clinical consequences of restrictive transfusion strategies, we examined overall mortality, nonfatal myocardial infarction, cardiac events, pulmonary edema, stroke, thromboembolism, renal failure, infection, hemorrhage, mental confusion, functional recovery, and length of hospital stay Recommendation 1: The AABB recommends adhering to a restrictive transfusion strategy (7 to 8 g/dL) in hospitalized, stable patients (Grade: strong recommendation; high-quality evidence) Recommendation 2: The AABB suggests adhering to a restrictive strategy in hospitalized patients with preexisting cardiovascular disease and considering transfusion for patients with symptoms or a hemoglobin level of 8 g/dL or less (Grade: weak recommendation; moderate-quality evidence) Recommendation 3: The AABB cannot recommend for or against a liberal or restrictive transfusion threshold for hospitalized, hemodynamically stable patients with the acute coronary syndrome (Grade: uncertain recommendation; very low-quality evidence) Recommendation 4: The AABB suggests that transfusion decisions be influenced by symptoms as well as hemoglobin concentration (Grade: weak recommendation; low-quality evidence)


Journal ArticleDOI
TL;DR: The Cluster Lensing And Supernova Survey with Hubble (CLASH) as mentioned in this paper is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions.
Abstract: The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, 20 CLASH clusters are solely X-ray selected. The X-ray-selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (θ_Ein > 35" at z_s = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (σ_z ~ 0.02(1 + z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over eight epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6+2223 (z = 0.544).

Posted Content
TL;DR: A detailed analysis of a robust tensor power method is provided, establishing an analogue of Wedin's perturbation theorem for the singular vectors of matrices, and implies a robust and computationally tractable estimation approach for several popular latent variable models.
Abstract: This work considers a computationally and statistically efficient parameter estimation method for a wide class of latent variable models---including Gaussian mixture models, hidden Markov models, and latent Dirichlet allocation---which exploits a certain tensor structure in their low-order observable moments (typically, of second- and third-order). Specifically, parameter estimation is reduced to the problem of extracting a certain (orthogonal) decomposition of a symmetric tensor derived from the moments; this decomposition can be viewed as a natural generalization of the singular value decomposition for matrices. Although tensor decompositions are generally intractable to compute, the decomposition of these specially structured tensors can be efficiently obtained by a variety of approaches, including power iterations and maximization approaches (similar to the case of matrices). A detailed analysis of a robust tensor power method is provided, establishing an analogue of Wedin's perturbation theorem for the singular vectors of matrices. This implies a robust and computationally tractable estimation approach for several popular latent variable models.

Journal ArticleDOI
TL;DR: In this article, a review summarizes the major applications of low and high power ultrasound in food science and technology, and their methods and applications including important research results including the basic principles and applications.

Journal ArticleDOI
20 Jul 2012-ACS Nano
TL;DR: High resolution scanning transmission electron microscope (STEM) imaging reveals the coexistence of metallic and semiconducting phases within the chemically homogeneous two-dimensional MoS(2) nanosheets, suggesting potential for exploiting molecular scale electronic device designs in atomically thin 2D layers.
Abstract: Nanoscale heterostructures with quantum dots, nanowires, and nanosheets have opened up new routes toward advanced functionalities and implementation of novel electronic and photonic devices in reduced dimensions. Coherent and passivated heterointerfaces between electronically dissimilar materials can be typically achieved through composition or doping modulation as in GaAs/AlGaAs and Si/NiSi or heteroepitaxy of lattice matched but chemically distinct compounds. Here we report that single layers of chemically exfoliated MoS2 consist of electronically dissimilar polymorphs that are lattice matched such that they form chemically homogeneous atomic and electronic heterostructures. High resolution scanning transmission electron microscope (STEM) imaging reveals the coexistence of metallic and semiconducting phases within the chemically homogeneous two-dimensional (2D) MoS2 nanosheets. These results suggest potential for exploiting molecular scale electronic device designs in atomically thin 2D layers.

Journal ArticleDOI
29 Mar 2012
TL;DR: In this article, the authors reported results from searches for the standard model Higgs boson in proton-proton collisions at square root(s) = 7 TeV in five decay modes: gamma pair, b-quark pair, tau lepton pair, W pair, and Z pair.
Abstract: Combined results are reported from searches for the standard model Higgs boson in proton-proton collisions at sqrt(s)=7 TeV in five Higgs boson decay modes: gamma pair, b-quark pair, tau lepton pair, W pair, and Z pair. The explored Higgs boson mass range is 110-600 GeV. The analysed data correspond to an integrated luminosity of 4.6-4.8 inverse femtobarns. The expected excluded mass range in the absence of the standard model Higgs boson is 118-543 GeV at 95% CL. The observed results exclude the standard model Higgs boson in the mass range 127-600 GeV at 95% CL, and in the mass range 129-525 GeV at 99% CL. An excess of events above the expected standard model background is observed at the low end of the explored mass range making the observed limits weaker than expected in the absence of a signal. The largest excess, with a local significance of 3.1 sigma, is observed for a Higgs boson mass hypothesis of 124 GeV. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-600 (110-145) GeV is estimated to be 1.5 sigma (2.1 sigma). More data are required to ascertain the origin of this excess.

Journal ArticleDOI
TL;DR: The status incongruity hypothesis (SIH) as discussed by the authors suggests that women are penalized for status violations because doing so defends the gender hierarchy, and that backlash functions to preserve male dominance by reinforcing a double standard for power and control.