scispace - formally typeset
Search or ask a question

Showing papers by "Rutgers University published in 2021"


Journal ArticleDOI
01 Jan 2021
TL;DR: Transfer learning aims to improve the performance of target learners on target domains by transferring the knowledge contained in different but related source domains as discussed by the authors, in which the dependence on a large number of target-domain data can be reduced for constructing target learners.
Abstract: Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target-domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning research studies, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey article reviews more than 40 representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over 20 representative transfer learning models are used for experiments. The models are performed on three different data sets, that is, Amazon Reviews, Reuters-21578, and Office-31, and the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

2,433 citations


Journal ArticleDOI
23 Jun 2021
TL;DR: In this article, the authors describe the state-of-the-art in the field of federated learning from the perspective of distributed optimization, cryptography, security, differential privacy, fairness, compressed sensing, systems, information theory, and statistics.
Abstract: The term Federated Learning was coined as recently as 2016 to describe a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client’s raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective. Since then, the topic has gathered much interest across many different disciplines and the realization that solving many of these interdisciplinary problems likely requires not just machine learning but techniques from distributed optimization, cryptography, security, differential privacy, fairness, compressed sensing, systems, information theory, statistics, and more. This monograph has contributions from leading experts across the disciplines, who describe the latest state-of-the art from their perspective. These contributions have been carefully curated into a comprehensive treatment that enables the reader to understand the work that has been done and get pointers to where effort is required to solve many of the problems before Federated Learning can become a reality in practical systems. Researchers working in the area of distributed systems will find this monograph an enlightening read that may inspire them to work on the many challenging issues that are outlined. This monograph will get the reader up to speed quickly and easily on what is likely to become an increasingly important topic: Federated Learning.

2,144 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations


Journal ArticleDOI
TL;DR: In this article, a B-cell maturation antigen-directed chimeric antigen receptor (CAR) T-cell therapy, has shown clinical activity with expecable clinical outcomes with the use of idecabtagene vicleucel (ide-cel), also called bb2121.
Abstract: Background Idecabtagene vicleucel (ide-cel, also called bb2121), a B-cell maturation antigen–directed chimeric antigen receptor (CAR) T-cell therapy, has shown clinical activity with expec...

776 citations


Journal ArticleDOI
TL;DR: New features and resources of the RCSB PDB have been described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.
Abstract: The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.org. PDB data depositors include structural biologists using macromolecular crystallography, nuclear magnetic resonance spectroscopy, 3D electron microscopy and micro-electron diffraction. PDB data consumers accessing our web portals include researchers, educators and students studying fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. During the past 2 years, the research-focused RCSB PDB web portal (RCSB.org) has undergone a complete redesign, enabling improved searching with full Boolean operator logic and more facile access to PDB data integrated with >40 external biodata resources. New features and resources are described in detail using examples that showcase recently released structures of SARS-CoV-2 proteins and host cell proteins relevant to understanding and addressing the COVID-19 global pandemic.

770 citations


Journal ArticleDOI
TL;DR: This meta-analysis uses data from patients with type 2 diabetes from 6 outcomes trials to investigate the association of sodium-glucose cotransporter 2 inhibitors with cardiovascular- and kidney disease–related outcomes.
Abstract: Importance Sodium-glucose cotransporter 2 (SGLT2) inhibitors favorably affect cardiovascular (CV) and kidney outcomes; however, the consistency of outcomes across the class remains uncertain. Objective To perform meta-analyses that assess the CV and kidney outcomes of all 4 available SGLT2 inhibitors in patients with type 2 diabetes. Data Sources A systematic literature search was conducted in PubMed from January 1, 2015, to January 31, 2020. Study Selection One hundred forty-five records were initially identified; 137 were excluded because of study design or topic of interest. As a result, a total of 6 randomized, placebo-controlled CV and kidney outcomes trials of SGLT2 inhibitors in patients with type 2 diabetes were identified, with contributory data from 9 publications. All analyses were conducted on the total patient population of these trials. Data Extraction and Synthesis Standardized data search and abstraction were performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement. Data were analyzed using a fixed-effect model. Main Outcomes and Measures Outcomes included time to the first event of (1) the composite of major adverse CV events of myocardial infarction, stroke, or CV death, and each component, (2) the composite of hospitalization for heart failure (HHF) or CV death (HHF/CV death) and each component, and (3) kidney composite outcomes. For outcomes in the overall trial populations and in selected subgroups, hazard ratios (HRs) and 95% CIs were pooled and meta-analyzed across trials. Results Data from 6 trials comprised 46 969 unique patients with type 2 diabetes, including 31 116 (66.2%) with atherosclerotic CV disease. The mean (SD) age of all trial participants was 63.7 (7.9) years; 30 939 (65.9%) were men, and 36 849 (78.5%) were White. The median number of participants per trial was 8246 (range, 4401-17 160). Overall, SGLT2 inhibitors were associated with a reduced risk of major adverse CV events (HR, 0.90; 95% CI, 0.85-0.95; Q statistic,P = .27), HHF/CV death (HR, 0.78; 95% CI, 0.73-0.84; Q statistic,P = .09), and kidney outcomes (HR, 0.62; 95% CI, 0.56-0.70; Q statistic,P = .09), with no significant heterogeneity of associations with outcome. Associated risk reduction for HHF was consistent across the trials (HR, 0.68; 95% CI, 0.61-0.76;I2 = 0.0%), whereas significant heterogeneity of associations with outcome was observed for CV death (HR, 0.85; 95% CI, 0.78-0.93; Q statistic,P = .02;I2 = 64.3%). The presence or absence of atherosclerotic CV disease did not modify the association with outcomes for major adverse CV events (HR, 0.89; 95% CI, 0.84-0.95 and HR, 0.94; 95% CI, 0.83-1.07, respectively;P = .63 for interaction), with similar absence of associations with outcome modification by prevalent atherosclerotic CV disease for HHF/CV death (P = .62 for interaction), HHF (P = .26 for interaction), or kidney outcomes (P = .73 for interaction). Conclusions and Relevance In this meta-analysis, SGLT2 inhibitors were associated with a reduced risk of major adverse CV events; in addition, results suggest significant heterogeneity in associations with CV death. The largest benefit across the class was for an associated reduction in risk for HHF and kidney outcomes, with benefits for HHF risk being the most consistent observation across the trials.

513 citations


Journal ArticleDOI
16 Mar 2021-JAMA
TL;DR: In this article, the authors compared clinical characteristics and outcomes of children and adolescents with MIS-C vs those with severe coronavirus disease 2019 (COVID-19) at 66 US hospitals in 31 states.
Abstract: Importance Refinement of criteria for multisystem inflammatory syndrome in children (MIS-C) may inform efforts to improve health outcomes. Objective To compare clinical characteristics and outcomes of children and adolescents with MIS-C vs those with severe coronavirus disease 2019 (COVID-19). Setting, Design, and Participants Case series of 1116 patients aged younger than 21 years hospitalized between March 15 and October 31, 2020, at 66 US hospitals in 31 states. Final date of follow-up was January 5, 2021. Patients with MIS-C had fever, inflammation, multisystem involvement, and positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase–polymerase chain reaction (RT-PCR) or antibody test results or recent exposure with no alternate diagnosis. Patients with COVID-19 had positive RT-PCR test results and severe organ system involvement. Exposure SARS-CoV-2. Main Outcomes and Measures Presenting symptoms, organ system complications, laboratory biomarkers, interventions, and clinical outcomes. Multivariable regression was used to compute adjusted risk ratios (aRRs) of factors associated with MIS-C vs COVID-19. Results Of 1116 patients (median age, 9.7 years; 45% female), 539 (48%) were diagnosed with MIS-C and 577 (52%) with COVID-19. Compared with patients with COVID-19, patients with MIS-C were more likely to be 6 to 12 years old (40.8% vs 19.4%; absolute risk difference [RD], 21.4% [95% CI, 16.1%-26.7%]; aRR, 1.51 [95% CI, 1.33-1.72] vs 0-5 years) and non-Hispanic Black (32.3% vs 21.5%; RD, 10.8% [95% CI, 5.6%-16.0%]; aRR, 1.43 [95% CI, 1.17-1.76] vs White). Compared with patients with COVID-19, patients with MIS-C were more likely to have cardiorespiratory involvement (56.0% vs 8.8%; RD, 47.2% [95% CI, 42.4%-52.0%]; aRR, 2.99 [95% CI, 2.55-3.50] vs respiratory involvement), cardiovascular without respiratory involvement (10.6% vs 2.9%; RD, 7.7% [95% CI, 4.7%-10.6%]; aRR, 2.49 [95% CI, 2.05-3.02] vs respiratory involvement), and mucocutaneous without cardiorespiratory involvement (7.1% vs 2.3%; RD, 4.8% [95% CI, 2.3%-7.3%]; aRR, 2.29 [95% CI, 1.84-2.85] vs respiratory involvement). Patients with MIS-C had higher neutrophil to lymphocyte ratio (median, 6.4 vs 2.7,P Conclusions and Relevance This case series of patients with MIS-C and with COVID-19 identified patterns of clinical presentation and organ system involvement. These patterns may help differentiate between MIS-C and COVID-19.

493 citations


Book ChapterDOI
27 Sep 2021
TL;DR: Jeon et al. as discussed by the authors proposed a gated axial-attention model which extends the existing transformer-based architectures by introducing an additional control mechanism in the selfattention module.
Abstract: Over the past decade, deep convolutional neural networks have been widely adopted for medical image segmentation and shown to achieve adequate performance. However, due to inherent inductive biases present in convolutional architectures, they lack understanding of long-range dependencies in the image. Recently proposed transformer-based architectures that leverage self-attention mechanism encode long-range dependencies and learn representations that are highly expressive. This motivates us to explore transformer-based solutions and study the feasibility of using transformer-based network architectures for medical image segmentation tasks. Majority of existing transformer-based network architectures proposed for vision applications require large-scale datasets to train properly. However, compared to the datasets for vision applications, in medical imaging the number of data samples is relatively low, making it difficult to efficiently train transformers for medical imaging applications. To this end, we propose a gated axial-attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module. Furthermore, to train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance. Specifically, we operate on the whole image and patches to learn global and local features, respectively. The proposed Medical Transformer (MedT) is evaluated on three different medical image segmentation datasets and it is shown that it achieves better performance than the convolutional and other related transformer-based architectures. Code: https://github.com/jeya-maria-jose/Medical-Transformer

464 citations


Journal ArticleDOI
TL;DR: A systematic review and random‐effects meta‐analysis to assess the prevalence of depression, anxiety, and sleep disturbances in COVID‐19 patients found no significant differences in the prevalence estimates between different genders; however, the depression and anxiety prevalence estimates varied based on different screening tools.
Abstract: Evidence from previous coronavirus outbreaks has shown that infected patients are at risk for developing psychiatric and mental health disorders, such as depression, anxiety, and sleep disturbances. To construct a comprehensive picture of the mental health status in COVID-19 patients, we conducted a systematic review and random-effects meta-analysis to assess the prevalence of depression, anxiety, and sleep disturbances in this population. We searched MEDLINE, EMBASE, PubMed, Web of Science, CINAHL, Wanfang Data, Wangfang Med Online, CNKI, and CQVIP for relevant articles, and we included 31 studies (n = 5153) in our analyses. We found that the pooled prevalence of depression was 45% (95% CI: 37-54%, I2 = 96%), the pooled prevalence of anxiety was 47% (95% CI: 37-57%, I2 = 97%), and the pooled prevalence of sleeping disturbances was 34% (95% CI: 19-50%, I2 = 98%). We did not find any significant differences in the prevalence estimates between different genders; however, the depression and anxiety prevalence estimates varied based on different screening tools. More observational studies assessing the mental wellness of COVID-19 outpatients and COVID-19 patients from countries other than China are needed to further examine the psychological implications of COVID-19 infections.

425 citations


Journal ArticleDOI
TL;DR: In this paper, the anti-SARS-CoV-2 antibody levels in convalescent plasma used to treat hospitalized adults with Covid-19 were determined based on a U.S. national registry, and the primary outcome was death within 30 days after plasma transfusion.
Abstract: Background Convalescent plasma has been widely used to treat coronavirus disease 2019 (Covid-19) under the presumption that such plasma contains potentially therapeutic antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can be passively transferred to the plasma recipient. Whether convalescent plasma with high antibody levels rather than low antibody levels is associated with a lower risk of death is unknown. Methods In a retrospective study based on a U.S. national registry, we determined the anti-SARS-CoV-2 IgG antibody levels in convalescent plasma used to treat hospitalized adults with Covid-19. The primary outcome was death within 30 days after plasma transfusion. Patients who were enrolled through July 4, 2020, and for whom data on anti-SARS-CoV-2 antibody levels in plasma transfusions and on 30-day mortality were available were included in the analysis. Results Of the 3082 patients included in this analysis, death within 30 days after plasma transfusion occurred in 115 of 515 patients (22.3%) in the high-titer group, 549 of 2006 patients (27.4%) in the medium-titer group, and 166 of 561 patients (29.6%) in the low-titer group. The association of anti-SARS-CoV-2 antibody levels with the risk of death from Covid-19 was moderated by mechanical ventilation status. A lower risk of death within 30 days in the high-titer group than in the low-titer group was observed among patients who had not received mechanical ventilation before transfusion (relative risk, 0.66; 95% confidence interval [CI], 0.48 to 0.91), and no effect on the risk of death was observed among patients who had received mechanical ventilation (relative risk, 1.02; 95% CI, 0.78 to 1.32). Conclusions Among patients hospitalized with Covid-19 who were not receiving mechanical ventilation, transfusion of plasma with higher anti-SARS-CoV-2 IgG antibody levels was associated with a lower risk of death than transfusion of plasma with lower antibody levels. (Funded by the Department of Health and Human Services and others; ClinicalTrials.gov number, NCT04338360.).

396 citations


Journal ArticleDOI
University of Michigan1, Cornell University2, University of Pennsylvania3, University of Massachusetts Medical School4, University of Naples Federico II5, Baylor College of Medicine6, Spanish National Research Council7, Complutense University of Madrid8, New York University9, University of Rome Tor Vergata10, Boston Children's Hospital11, NewYork–Presbyterian Hospital12, University of Pittsburgh13, University of Paris14, French Institute of Health and Medical Research15, National University of Cuyo16, Albert Einstein College of Medicine17, University of New Mexico18, Goethe University Frankfurt19, Weizmann Institute of Science20, University of Turku21, Sapienza University of Rome22, Virginia Commonwealth University23, St. Jude Children's Research Hospital24, Discovery Institute25, University of Copenhagen26, University of Tromsø27, Eötvös Loránd University28, Merck & Co.29, University of Freiburg30, Babraham Institute31, University of Adelaide32, University of South Australia33, University of Oviedo34, University of Chicago35, University of Graz36, National Institutes of Health37, Queens College38, City University of New York39, University of Tokyo40, University of Zurich41, University of British Columbia42, Austrian Academy of Sciences43, University of California, San Francisco44, Russian Academy of Sciences45, University Medical Center Groningen46, University of Cambridge47, University of Glasgow48, Rutgers University49, University of Padua50, Kazan Federal University51, University of Bern52, University of Oxford53, Oslo University Hospital54, University of Oslo55, University of Crete56, Foundation for Research & Technology – Hellas57, Francis Crick Institute58, Osaka University59, Harvard University60, Chinese Academy of Sciences61, Icahn School of Medicine at Mount Sinai62, Shanghai Jiao Tong University63, Karolinska Institutet64
TL;DR: In this paper, preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Abstract: Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.

Journal ArticleDOI
TL;DR: Mol* as mentioned in this paper is a web-native 3D visualization and streaming tool for macromolecular coordinate and experimental data, together with capabilities for displaying structure quality, functional, or biological context annotations.
Abstract: Large biomolecular structures are being determined experimentally on a daily basis using established techniques such as crystallography and electron microscopy. In addition, emerging integrative or hybrid methods (I/HM) are producing structural models of huge macromolecular machines and assemblies, sometimes containing 100s of millions of non-hydrogen atoms. The performance requirements for visualization and analysis tools delivering these data are increasing rapidly. Significant progress in developing online, web-native three-dimensional (3D) visualization tools was previously accomplished with the introduction of the LiteMol suite and NGL Viewers. Thereafter, Mol* development was jointly initiated by PDBe and RCSB PDB to combine and build on the strengths of LiteMol (developed by PDBe) and NGL (developed by RCSB PDB). The web-native Mol* Viewer enables 3D visualization and streaming of macromolecular coordinate and experimental data, together with capabilities for displaying structure quality, functional, or biological context annotations. High-performance graphics and data management allows users to simultaneously visualise up to hundreds of (superimposed) protein structures, stream molecular dynamics simulation trajectories, render cell-level models, or display huge I/HM structures. It is the primary 3D structure viewer used by PDBe and RCSB PDB. It can be easily integrated into third-party services. Mol* Viewer is open source and freely available at https://molstar.org/.

Journal ArticleDOI
TL;DR: Among critically ill patients with COVID-19 in this cohort study, the risk of in-hospital mortality in this study was lower in patients treated with tocilizumab in the first 2 days of ICU admission compared with patients whose treatment did not include early use of tocilzumab, and the findings may be susceptible to unmeasured confounding.
Abstract: Importance Therapies that improve survival in critically ill patients with coronavirus disease 2019 (COVID-19) are needed. Tocilizumab, a monoclonal antibody against the interleukin 6 receptor, may counteract the inflammatory cytokine release syndrome in patients with severe COVID-19 illness. Objective To test whether tocilizumab decreases mortality in this population. Design, setting, and participants The data for this study were derived from a multicenter cohort study of 4485 adults with COVID-19 admitted to participating intensive care units (ICUs) at 68 hospitals across the US from March 4 to May 10, 2020. Critically ill adults with COVID-19 were categorized according to whether they received or did not receive tocilizumab in the first 2 days of admission to the ICU. Data were collected retrospectively until June 12, 2020. A Cox regression model with inverse probability weighting was used to adjust for confounding. Exposures Treatment with tocilizumab in the first 2 days of ICU admission. Main outcomes and measures Time to death, compared via hazard ratios (HRs), and 30-day mortality, compared via risk differences. Results Among the 3924 patients included in the analysis (2464 male [62.8%]; median age, 62 [interquartile range {IQR}, 52-71] years), 433 (11.0%) received tocilizumab in the first 2 days of ICU admission. Patients treated with tocilizumab were younger (median age, 58 [IQR, 48-65] vs 63 [IQR, 52-72] years) and had a higher prevalence of hypoxemia on ICU admission (205 of 433 [47.3%] vs 1322 of 3491 [37.9%] with mechanical ventilation and a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen of Conclusions and relevance Among critically ill patients with COVID-19 in this cohort study, the risk of in-hospital mortality in this study was lower in patients treated with tocilizumab in the first 2 days of ICU admission compared with patients whose treatment did not include early use of tocilizumab. However, the findings may be susceptible to unmeasured confounding, and further research from randomized clinical trials is needed.

Journal ArticleDOI
TL;DR: COVID-19 is conceptualized as a unique, compounding, multidimensional stressor that will create a vast need for intervention and necessitate new paradigms for mental health service delivery and training.
Abstract: COVID-19 presents significant social, economic, and medical challenges. Because COVID-19 has already begun to precipitate huge increases in mental health problems, clinical psychological science must assert a leadership role in guiding a national response to this secondary crisis. In this article, COVID-19 is conceptualized as a unique, compounding, multidimensional stressor that will create a vast need for intervention and necessitate new paradigms for mental health service delivery and training. Urgent challenge areas across developmental periods are discussed, followed by a review of psychological symptoms that likely will increase in prevalence and require innovative solutions in both science and practice. Implications for new research directions, clinical approaches, and policy issues are discussed to highlight the opportunities for clinical psychological science to emerge as an updated, contemporary field capable of addressing the burden of mental illness and distress in the wake of COVID-19 and beyond. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

Journal ArticleDOI
TL;DR: This work presents a deep subdomain adaptation network (DSAN) that learns a transfer network by aligning the relevant subdomain distributions of domain-specific layer activations across different domains based on a local maximum mean discrepancy (LMMD).
Abstract: For a target task where the labeled data are unavailable, domain adaptation can transfer a learner from a different source domain. Previous deep domain adaptation methods mainly learn a global domain shift, i.e., align the global source and target distributions without considering the relationships between two subdomains within the same category of different domains, leading to unsatisfying transfer learning performance without capturing the fine-grained information. Recently, more and more researchers pay attention to subdomain adaptation that focuses on accurately aligning the distributions of the relevant subdomains. However, most of them are adversarial methods that contain several loss functions and converge slowly. Based on this, we present a deep subdomain adaptation network (DSAN) that learns a transfer network by aligning the relevant subdomain distributions of domain-specific layer activations across different domains based on a local maximum mean discrepancy (LMMD). Our DSAN is very simple but effective, which does not need adversarial training and converges fast. The adaptation can be achieved easily with most feedforward network models by extending them with LMMD loss, which can be trained efficiently via backpropagation. Experiments demonstrate that DSAN can achieve remarkable results on both object recognition tasks and digit classification tasks. Our code will be available at https://github.com/easezyc/deep-transfer-learning .

Journal ArticleDOI
TL;DR: A comprehensive overview of the state-of-the-art on JCR systems from the signal processing perspective is provided in this article, where a balanced coverage on both transmitter and receiver is provided.
Abstract: Joint communication and radar sensing (JCR) represents an emerging research field aiming to integrate the above two functionalities into a single system, by sharing the majority of hardware, signal processing modules and, in a typical case, the transmitted signal. The close cooperation of the communication and sensing functions can enable significant improvement of spectrum efficiency, reduction of device size, cost and power consumption, and improvement of performance of both functions. Advanced signal processing techniques are critical for making the integration efficient, from transmission signal design to receiver processing. This paper provides a comprehensive overview of the state-of-the-art on JCR systems from the signal processing perspective. A balanced coverage on both transmitter and receiver is provided for three types of JCR systems, namely, communication-centric, radar-centric, and joint design and optimization.

Journal ArticleDOI
Richard R. Orlandi1, Todd T. Kingdom2, Timothy L. Smith3, Benjamin S. Bleier4, Adam S. DeConde5, Amber U Luong6, David M. Poetker7, Zachary M. Soler8, Kevin C. Welch9, Sarah K. Wise10, Nithin D. Adappa11, Jeremiah A. Alt1, Wilma Terezinha Anselmo-Lima12, Claus Bachert13, Claus Bachert14, Claus Bachert15, Fuad M. Baroody16, Pete S. Batra17, Manuel Bernal-Sprekelsen18, Daniel M. Beswick19, Neil Bhattacharyya4, Rakesh K. Chandra20, Eugene H. Chang21, Alexander G. Chiu22, Naweed I. Chowdhury20, Martin J. Citardi6, Noam A. Cohen11, David B. Conley9, John M. DelGaudio10, Martin Desrosiers23, Richard G. Douglas24, Jean Anderson Eloy25, Wytske Fokkens26, Stacey T. Gray4, David A. Gudis27, Daniel L. Hamilos4, Joseph K. Han28, Richard J. Harvey29, Peter Hellings30, Eric H. Holbrook4, Claire Hopkins31, Peter H. Hwang32, Amin R. Javer33, Rong San Jiang, David N. Kennedy11, Robert C. Kern9, Tanya M. Laidlaw4, Devyani Lal34, Andrew P. Lane35, Heung Man Lee36, Jivianne T. Lee19, Joshua M. Levy10, Sandra Y. Lin35, Valerie J. Lund, Kevin C. McMains37, Ralph Metson4, Joaquim Mullol18, Robert M. Naclerio35, Gretchen M. Oakley1, Nobuyoshi Otori38, James N. Palmer11, Sanjay R. Parikh39, Desiderio Passali40, Zara M. Patel32, Anju T. Peters9, Carl Philpott41, Alkis J. Psaltis42, Vijay R. Ramakrishnan2, Murugappan Ramanathan35, Hwan Jung Roh43, Luke Rudmik44, Raymond Sacks29, Rodney J. Schlosser8, Ahmad R. Sedaghat45, Brent A. Senior46, Raj Sindwani47, Kristine A. Smith48, Kornkiat Snidvongs49, Michael G. Stewart50, Jeffrey D. Suh19, Bruce K. Tan9, Justin H. Turner20, Cornelis M. van Drunen26, Richard Louis Voegels12, De Yun Wang51, Bradford A. Woodworth52, Peter-John Wormald42, Erin D. Wright53, Carol H. Yan5, Luo Zhang54, Bing Zhou54 
University of Utah1, University of Colorado Denver2, Oregon Health & Science University3, Harvard University4, University of California, San Diego5, University of Texas Health Science Center at Houston6, Medical College of Wisconsin7, Medical University of South Carolina8, Northwestern University9, Emory University10, University of Pennsylvania11, University of São Paulo12, Ghent University13, Sun Yat-sen University14, Karolinska Institutet15, University of Chicago16, Rush University Medical Center17, University of Barcelona18, University of California, Los Angeles19, Vanderbilt University20, University of Arizona21, University of Kansas22, Université de Montréal23, University of Auckland24, Rutgers University25, University of Amsterdam26, Columbia University27, Eastern Virginia Medical School28, University of New South Wales29, Katholieke Universiteit Leuven30, Guy's Hospital31, Stanford University32, University of British Columbia33, Mayo Clinic34, Johns Hopkins University35, Korea University36, Uniformed Services University of the Health Sciences37, Jikei University School of Medicine38, University of Washington39, University of Siena40, University of East Anglia41, University of Adelaide42, Pusan National University43, University of Calgary44, University of Cincinnati45, University of North Carolina at Chapel Hill46, Cleveland Clinic47, University of Winnipeg48, Chulalongkorn University49, Cornell University50, National University of Singapore51, University of Alabama at Birmingham52, University of Alberta53, Capital Medical University54
TL;DR: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in the understanding and treatment of rhinologic disease.
Abstract: I. Executive summary BACKGROUND: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR-RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR-RS-2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence-based findings of the document. Methods ICAR-RS presents over 180 topics in the forms of evidence-based reviews with recommendations (EBRRs), evidence-based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results ICAR-RS-2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence-based management algorithm is provided. Conclusion This ICAR-RS-2021 executive summary provides a compilation of the evidence-based recommendations for medical and surgical treatment of the most common forms of RS.

Journal ArticleDOI
TL;DR: In this paper, population-based estimates of the risk of breast cancer associated with germline pathogenic variants in cancer-predisposition genes are critically needed for risk assessment and risk assessment.
Abstract: Background Population-based estimates of the risk of breast cancer associated with germline pathogenic variants in cancer-predisposition genes are critically needed for risk assessment and...

Journal ArticleDOI
TL;DR: The evolution and current status of DBS technology is discussed, future advances are anticipated, and the next major technological advances and hurdles in the field are predicted.
Abstract: Deep brain stimulation (DBS) is a neurosurgical procedure that allows targeted circuit-based neuromodulation. DBS is a standard of care in Parkinson disease, essential tremor and dystonia, and is also under active investigation for other conditions linked to pathological circuitry, including major depressive disorder and Alzheimer disease. Modern DBS systems, borrowed from the cardiac field, consist of an intracranial electrode, an extension wire and a pulse generator, and have evolved slowly over the past two decades. Advances in engineering and imaging along with an improved understanding of brain disorders are poised to reshape how DBS is viewed and delivered to patients. Breakthroughs in electrode and battery designs, stimulation paradigms, closed-loop and on-demand stimulation, and sensing technologies are expected to enhance the efficacy and tolerability of DBS. In this Review, we provide a comprehensive overview of the technical development of DBS, from its origins to its future. Understanding the evolution of DBS technology helps put the currently available systems in perspective and allows us to predict the next major technological advances and hurdles in the field.

Journal ArticleDOI
27 Jan 2021-Nature
TL;DR: The Living Planet Index (LPI) is a measure of changes in abundance aggregated from 57 abundance time-series datasets for 18 oceanic shark and ray species and the Red List Index (Red List Index) is calculated for all 31 oceanic species of sharks and rays.
Abstract: Overfishing is the primary cause of marine defaunation, yet declines in and increasing extinction risks of individual species are difficult to measure, particularly for the largest predators found in the high seas1-3. Here we calculate two well-established indicators to track progress towards Aichi Biodiversity Targets and Sustainable Development Goals4,5: the Living Planet Index (a measure of changes in abundance aggregated from 57 abundance time-series datasets for 18 oceanic shark and ray species) and the Red List Index (a measure of change in extinction risk calculated for all 31 oceanic species of sharks and rays). We find that, since 1970, the global abundance of oceanic sharks and rays has declined by 71% owing to an 18-fold increase in relative fishing pressure. This depletion has increased the global extinction risk to the point at which three-quarters of the species comprising this functionally important assemblage are threatened with extinction. Strict prohibitions and precautionary science-based catch limits are urgently needed to avert population collapse6,7, avoid the disruption of ecological functions and promote species recovery8,9.

Journal ArticleDOI
TL;DR: In this paper, the authors provide a systematic and comprehensive review of the contemporary deep learning techniques for graph anomaly detection, and highlight twelve extensive future research directions according to their survey results covering emerging problems introduced by graph data, anomaly detection and real applications.
Abstract: Over the last forty years, researches on anomalies have received intensified interests and the burst of information has attracted more attention on anomalies because of their significance in a wide range of disciplines. Anomaly detection, which aims to identify these rare observations, is among the most vital tasks and has shown its power in preventing detrimental events, such as financial fraud, network intrusion, and social spam, from happening. The detection task is typically solved by detecting outlying data in the features space and inherently overlooks the structural information. Graphs have been prevalently used to preserve structural information, and this raises the graph anomaly detection problem - identifying anomalous graph objects (nodes, edges, sub-graphs, and graphs). However, conventional anomaly detection techniques cannot well solve this problem because of the complexity of graph data. For the aptitudes of deep learning in breaking these limitations, graph anomaly detection with deep learning has received intensified studies recently. In this survey, we aim to provide a systematic and comprehensive review of the contemporary deep learning techniques for graph anomaly detection. We also highlight twelve extensive future research directions according to our survey results covering emerging problems introduced by graph data, anomaly detection and real applications.

Journal ArticleDOI
TL;DR: In this paper, safe and effective long-acting injectable agents for preexposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection are needed to increase the options for preve...
Abstract: Background Safe and effective long-acting injectable agents for preexposure prophylaxis (PrEP) for human immunodeficiency virus (HIV) infection are needed to increase the options for preve...

Journal ArticleDOI
TL;DR: A range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Abstract: Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the range and severity of neurologic involvement among children and adolescents associated with COVID-19 and found that patients with involvement were more likely to have underlying neurologic disorders (81 of 365 [22] compared with those without (113 of 1330 [8%]), but a similar number were previously healthy (195 [53%] vs 723 [54%]) and met criteria for multisystem inflammatory syndrome in children (126 [35%] vs 490 [37%]).
Abstract: Importance Coronavirus disease 2019 (COVID-19) affects the nervous system in adult patients. The spectrum of neurologic involvement in children and adolescents is unclear. Objective To understand the range and severity of neurologic involvement among children and adolescents associated with COVID-19. Setting, Design, and Participants Case series of patients (age Exposures Severe acute respiratory syndrome coronavirus 2. Main Outcomes and Measures Type and severity of neurologic involvement, laboratory and imaging data, and outcomes (death or survival with new neurologic deficits) at hospital discharge. Results Of 1695 patients (909 [54%] male; median [interquartile range] age, 9.1 [2.4-15.3] years), 365 (22%) from 52 sites had documented neurologic involvement. Patients with neurologic involvement were more likely to have underlying neurologic disorders (81 of 365 [22%]) compared with those without (113 of 1330 [8%]), but a similar number were previously healthy (195 [53%] vs 723 [54%]) and met criteria for multisystem inflammatory syndrome in children (126 [35%] vs 490 [37%]). Among those with neurologic involvement, 322 (88%) had transient symptoms and survived, and 43 (12%) developed life-threatening conditions clinically adjudicated to be associated with COVID-19, including severe encephalopathy (n = 15; 5 with splenial lesions), stroke (n = 12), central nervous system infection/demyelination (n = 8), Guillain-Barre syndrome/variants (n = 4), and acute fulminant cerebral edema (n = 4). Compared with those without life-threatening conditions (n = 322), those with life-threatening neurologic conditions had higher neutrophil-to-lymphocyte ratios (median, 12.2 vs 4.4) and higher reported frequency of D-dimer greater than 3 μg/mL fibrinogen equivalent units (21 [49%] vs 72 [22%]). Of 43 patients who developed COVID-19–related life-threatening neurologic involvement, 17 survivors (40%) had new neurologic deficits at hospital discharge, and 11 patients (26%) died. Conclusions and Relevance In this study, many children and adolescents hospitalized for COVID-19 or multisystem inflammatory syndrome in children had neurologic involvement, mostly transient symptoms. A range of life-threatening and fatal neurologic conditions associated with COVID-19 infrequently occurred. Effects on long-term neurodevelopmental outcomes are unknown.

Book ChapterDOI
27 Sep 2021
TL;DR: In this paper, a self-attention mechanism along with relative position encoding was proposed to reduce the complexity of selfattention operation significantly from O(n 2 ) to approximate O (n).
Abstract: Transformer architecture has emerged to be successful in a number of natural language processing tasks. However, its applications to medical vision remain largely unexplored. In this study, we present UTNet, a simple yet powerful hybrid Transformer architecture that integrates self-attention into a convolutional neural network for enhancing medical image segmentation. UTNet applies self-attention modules in both encoder and decoder for capturing long-range dependency at different scales with minimal overhead. To this end, we propose an efficient self-attention mechanism along with relative position encoding that reduces the complexity of self-attention operation significantly from \(O(n^2)\) to approximate O(n). A new self-attention decoder is also proposed to recover fine-grained details from the skipped connections in the encoder. Our approach addresses the dilemma that Transformer requires huge amounts of data to learn vision inductive bias. Our hybrid layer design allows the initialization of Transformer into convolutional networks without a need of pre-training. We have evaluated UTNet on the multi-label, multi-vendor cardiac magnetic resonance imaging cohort. UTNet demonstrates superior segmentation performance and robustness against the state-of-the-art approaches, holding the promise to generalize well on other medical image segmentations.

Journal ArticleDOI
TL;DR: In this paper, the authors summarize recent contributions in the broad area of AoI and present general AoI evaluation analysis that are applicable to a wide variety of sources and systems, starting from elementary single-server queues, and applying these AoI methods to a range of increasingly complex systems, including energy harvesting sensors transmitting over noisy channels, parallel server systems, queueing networks, and various single-hop and multi-hop wireless networks.
Abstract: We summarize recent contributions in the broad area of age of information (AoI). In particular, we describe the current state of the art in the design and optimization of low-latency cyberphysical systems and applications in which sources send time-stamped status updates to interested recipients. These applications desire status updates at the recipients to be as timely as possible; however, this is typically constrained by limited system resources. We describe AoI timeliness metrics and present general methods of AoI evaluation analysis that are applicable to a wide variety of sources and systems. Starting from elementary single-server queues, we apply these AoI methods to a range of increasingly complex systems, including energy harvesting sensors transmitting over noisy channels, parallel server systems, queueing networks, and various single-hop and multi-hop wireless networks. We also explore how update age is related to MMSE methods of sampling, estimation and control of stochastic processes. The paper concludes with a review of efforts to employ age optimization in cyberphysical applications.

Journal ArticleDOI
TL;DR: A review of the latest approaches to diagnostics and therapy of COVID-19 can be found in this paper, where the authors summarized recent progress on the conventional therapeutics such as antiviral drugs, vaccines, anti-SARS-CoV-2 antibody treatments, and convalescent plasma therapy.
Abstract: The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a serious public health threat worldwide with millions of people at risk in a growing number of countries. Though there are no clinically approved antiviral drugs and vaccines for COVID-19, attempts are ongoing for clinical trials of several known antiviral drugs, their combination, as well as development of vaccines in patients with confirmed COVID-19. This review focuses on the latest approaches to diagnostics and therapy of COVID-19. We have summarized recent progress on the conventional therapeutics such as antiviral drugs, vaccines, anti-SARS-CoV-2 antibody treatments, and convalescent plasma therapy which are currently under extensive research and clinical trials for the treatment of COVID-19. The developments of nanoparticle-based therapeutic and diagnostic approaches have been also discussed for COVID-19. We have assessed recent literature data on this topic and made a summary of current development and future perspectives.

Journal ArticleDOI
TL;DR: This paper proposes a general Exercise-Enhanced Recurrent Neural Network framework and extends EERNN to an explainable Exercise-aware Knowledge Tracing framework by incorporating the knowledge concept information, where the student's integrated state vector is now extended to a knowledge state matrix.
Abstract: For offering proactive services (e.g., personalized exercise recommendation) to the students in computer supported intelligent education, one of the fundamental tasks is predicting student performance (e.g., scores) on future exercises, where it is necessary to track the change of each student's knowledge acquisition during her exercising activities. Unfortunately, to the best of our knowledge, existing approaches can only exploit the exercising records of students, and the problem of extracting rich information existed in the materials (e.g., knowledge concepts, exercise content) of exercises to achieve both more precise prediction of student performance and more interpretable analysis of knowledge acquisition remains underexplored. To this end, in this paper, we present a holistic study of student performance prediction. To directly achieve the primary goal of performance prediction, we first propose a general E xercise- E nhanced R ecurrent N eural N etwork (EERNN) framework by exploring both student's exercising records and the text content of corresponding exercises. In EERNN, we simply summarize each student's state into an integrated vector and trace it with a recurrent neural network, where we design a bidirectional LSTM to learn the encoding of each exercise from its content. For making final predictions, we design two implementations on the basis of EERNN with different prediction strategies, i.e., EERNNM with Markov property and EERNNA with Attention mechanism . Then, to explicitly track student's knowledge acquisition on multiple knowledge concepts, we extend EERNN to an explainable E xercise-aware K nowledge T racing (EKT) framework by incorporating the knowledge concept information, where the student's integrated state vector is now extended to a knowledge state matrix. In EKT, we further develop a memory network for quantifying how much each exercise can affect the mastery of students on multiple knowledge concepts during the exercising process. Finally, we conduct extensive experiments and evaluate both EERNN and EKT frameworks on a large-scale real-world data. The results in both general and cold-start scenarios clearly demonstrate the effectiveness of two frameworks in student performance prediction as well as the superior interpretability of EKT.

Journal ArticleDOI
01 Jun 2021
TL;DR: In this paper, the authors used enhanced surveillance data to identify persons with multisystem inflammatory syndrome in children (MIS-C) during April to June 2020, in 7 jurisdictions reporting to both the Centers for Disease Control and Prevention national surveillance and to Overcoming COVID-19, a multicenter MIS-C study.
Abstract: Importance Multisystem inflammatory syndrome in children (MIS-C) is associated with recent or current SARS-CoV-2 infection. Information on MIS-C incidence is limited. Objective To estimate population-based MIS-C incidence per 1 000 000 person-months and to estimate MIS-C incidence per 1 000 000 SARS-CoV-2 infections in persons younger than 21 years. Design, Setting, and Participants This cohort study used enhanced surveillance data to identify persons with MIS-C during April to June 2020, in 7 jurisdictions reporting to both the Centers for Disease Control and Prevention national surveillance and to Overcoming COVID-19, a multicenter MIS-C study. Denominators for population-based estimates were derived from census estimates; denominators for incidence per 1 000 000 SARS-CoV-2 infections were estimated by applying published age- and month-specific multipliers accounting for underdetection of reported COVID-19 case counts. Jurisdictions included Connecticut, Georgia, Massachusetts, Michigan, New Jersey, New York (excluding New York City), and Pennsylvania. Data analyses were conducted from August to December 2020. Exposures Race/ethnicity, sex, and age group (ie, ≤5, 6-10, 11-15, and 16-20 years). Main Outcomes and Measures Overall and stratum-specific adjusted estimated MIS-C incidence per 1 000 000 person-months and per 1 000 000 SARS-CoV-2 infections. Results In the 7 jurisdictions examined, 248 persons with MIS-C were reported (median [interquartile range] age, 8 [4-13] years; 133 [53.6%] male; 96 persons [38.7%] were Hispanic or Latino; 75 persons [30.2%] were Black). The incidence of MIS-C per 1 000 000 person-months was 5.1 (95% CI, 4.5-5.8) persons. Compared with White persons, incidence per 1 000 000 person-months was higher among Black persons (adjusted incidence rate ratio [aIRR], 9.26 [95% CI, 6.15-13.93]), Hispanic or Latino persons (aIRR, 8.92 [95% CI, 6.00-13.26]), and Asian or Pacific Islander (aIRR, 2.94 [95% CI, 1.49-5.82]) persons. MIS-C incidence per 1 000 000 SARS-CoV-2 infections was 316 (95% CI, 278-357) persons and was higher among Black (aIRR, 5.62 [95% CI, 3.68-8.60]), Hispanic or Latino (aIRR, 4.26 [95% CI, 2.85-6.38]), and Asian or Pacific Islander persons (aIRR, 2.88 [95% CI, 1.42-5.83]) compared with White persons. For both analyses, incidence was highest among children aged 5 years or younger (4.9 [95% CI, 3.7-6.6] children per 1 000 000 person-months) and children aged 6 to 10 years (6.3 [95% CI, 4.8-8.3] children per 1 000 000 person-months). Conclusions and Relevance In this cohort study, MIS-C was a rare complication associated with SARS-CoV-2 infection. Estimates for population-based incidence and incidence among persons with infection were higher among Black, Hispanic or Latino, and Asian or Pacific Islander persons. Further study is needed to understand variability by race/ethnicity and age group.

Journal ArticleDOI
TL;DR: A range of clinical observations and initial case series describing potential neurologic manifestations of COVID-19 are synthesized and place these observations in the context of coronavirus neuro-pathophysiology as it may relate to SARS-CoV-2 infection.
Abstract: As the current understanding of COVID-19 continues to evolve, a synthesis of the literature on the neurological impact of this novel virus may help inform clinical management and highlight potentially important avenues of investigation. Additionally, understanding the potential mechanisms of neurologic injury may guide efforts to better detect and ameliorate these complications. In this review, we synthesize a range of clinical observations and initial case series describing potential neurologic manifestations of COVID-19 and place these observations in the context of coronavirus neuro-pathophysiology as it may relate to SARS-CoV-2 infection. Reported nervous system manifestations range from anosmia and ageusia, to cerebral hemorrhage and infarction. While the volume of COVID-19-related case studies continues to grow, previous work examining related viruses suggests potential mechanisms through which the novel coronavirus may impact the CNS and result in neurological complications. Namely, animal studies examining the SARS-CoV have implicated the angiotensin-converting-enzyme-2 receptor as a mediator of coronavirus-related neuronal damage and have shown that SARS-CoV can infect cerebrovascular endothelium and brain parenchyma, the latter predominantly in the medial temporal lobe, resulting in apoptosis and necrosis. Human postmortem brain studies indicate that human coronavirus variants and SARS-CoV can infect neurons and glia, implying SARS-CoV-2 may have similar neurovirulence. Additionally, studies have demonstrated an increase in cytokine serum levels as a result of SARS-CoV infection, consistent with the notion that cytokine overproduction and toxicity may be a relevant potential mechanism of neurologic injury, paralleling a known pathway of pulmonary injury. We also discuss evidence that suggests that SARS-CoV-2 may be a vasculotropic and neurotropic virus. Early reports suggest COVID-19 may be associated with severe neurologic complications, and several plausible mechanisms exist to account for these observations. A heightened awareness of the potential for neurologic involvement and further investigation into the relevant pathophysiology will be necessary to understand and ultimately mitigate SARS-CoV-2-associated neurologic injury.