scispace - formally typeset
Search or ask a question
Institution

Rutgers University

EducationNew Brunswick, New Jersey, United States
About: Rutgers University is a education organization based out in New Brunswick, New Jersey, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 68736 authors who have published 159418 publications receiving 6713860 citations. The organization is also known as: Rutgers, The State University of New Jersey & Rutgers.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, Liouville Field Theory (LFT) was shown to reproduce some of the predictions of the matrix model approach, in particular the scaling behavior, genus one partition functions, and integrated correlation functions.

815 citations

Journal ArticleDOI
17 Sep 1999-Cell
TL;DR: The X-ray crystal structure of Thermus aquaticus core RNA polymerase reveals a "crab claw"-shaped molecule with a 27 A wide internal channel that places key functional sites, defined by mutational and cross-linking analysis, on the inner walls of the channel in close proximity to the active center Mg2+.

814 citations

Journal ArticleDOI
TL;DR: The current understanding of the core components of the autophagy machinery and the functional relevance of autophile within the tumor microenvironment is described and how this knowledge has informed preclinical investigations combining the autophile inhibitor hydroxychloroquine (HCQ) with chemotherapy, targeted therapy, and immunotherapy is outlined.
Abstract: Autophagy is an evolutionarily conserved, intracellular self-defense mechanism in which organelles and proteins are sequestered into autophagic vesicles that are subsequently degraded through fusion with lysosomes. Cells, thereby, prevent the toxic accumulation of damaged or unnecessary components, but also recycle these components to sustain metabolic homoeostasis. Heightened autophagy is a mechanism of resistance for cancer cells faced with metabolic and therapeutic stress, revealing opportunities for exploitation as a therapeutic target in cancer. We summarize recent developments in the field of autophagy and cancer and build upon the results presented at the Cancer Therapy Evaluation Program (CTEP) Early Drug Development meeting in March 2010. Herein, we describe our current understanding of the core components of the autophagy machinery and the functional relevance of autophagy within the tumor microenvironment, and we outline how this knowledge has informed preclinical investigations combining the autophagy inhibitor hydroxychloroquine (HCQ) with chemotherapy, targeted therapy, and immunotherapy. Finally, we describe ongoing clinical trials involving HCQ as a first generation autophagy inhibitor, as well as strategies for the development of novel, more potent, and specific inhibitors of autophagy.

814 citations

Journal ArticleDOI
TL;DR: These patterns of genetic variation were very different from those reported for inbred species and provide important baseline data for cultivar identification and continuing studies of the evolution of polyploid races in this species.
Abstract: RAPD markers provide a powerful tool for the investigation of genetic variation in natural and domesticated populations. Recent studies of strain/cultivar identification have shown extensive RAPD divergence among, but little variation within, inbred species or cultivars. In contrast, little is known about the pattern and extent of RAPD variation in heterogeneous, outcrossing species. We describe the population genetic variation of RAPD markers in natural, diploid sources of dioecious buffalograss [Buchloe dactyloides (Nutt.) Engelm.]. Buffalograss is native to the semi-arid regions of the Great Plains of North America, where it is important for rangeland forage, soil conservation, and as turfgrass. Most sources of buffalograss germplasm are polyploid; diploid populations are previously known only from semi-arid Central Mexico. This is the first report of diploids from humid Gulf Coastal Texas. These two diploid sources represent divergent adaptive ecotypes. Seven 10-mer primers produced 98 polymorphic banding sites. Based on the presence/ absence of bands, a genetic distance matrix was calculated. The new Analysis of Molecular Variance (AMOVA) technique was used to apportion the variation among individuals within populations, among populations within adaptive regions, and among regions. There was considerable variation within each of the four populations, and every individual was genetically distinct. Even so, genetic divergence was found among local populations. Within-population variation was larger and among-population variation smaller in Mexico than in Texas. The largest observed genetic differences were those between the two regional ecotypes. These patterns of genetic variation were very different from those reported for inbred species and provide important baseline data for cultivar identification and continuing studies of the evolution of polyploid races in this species.

814 citations

Journal ArticleDOI
13 May 2004-Nature
TL;DR: The results show that the canonical Redfield N:P ratio of 16 is not a universal biochemical optimum, but instead represents an average of species-specific N:F ratios, which will vary from 8.2 to 45.0, depending on the ecological conditions.
Abstract: Redfield noted the similarity between the average nitrogen-to-phosphorus ratio in plankton (N:P = 16 by atoms) and in deep oceanic waters (N:P = 15; refs 1, 2). He argued that this was neither a coincidence, nor the result of the plankton adapting to the oceanic stoichiometry, but rather that phytoplankton adjust the N:P stoichiometry of the ocean to meet their requirements through nitrogen fixation, an idea supported by recent modelling studies3,4. But what determines the N:P requirements of phytoplankton? Here we use a stoichiometrically explicit model of phytoplankton physiology and resource competition to derive from first principles the optimal phytoplankton stoichiometry under diverse ecological scenarios. Competitive equilibrium favours greater allocation to P-poor resource-acquisition machinery and therefore a higher N:P ratio; exponential growth favours greater allocation to P-rich assembly machinery and therefore a lower N:P ratio. P-limited environments favour slightly less allocation to assembly than N-limited or light-limited environments. The model predicts that optimal N:P ratios will vary from 8.2 to 45.0, depending on the ecological conditions. Our results show that the canonical Redfield N:P ratio of 16 is not a universal biochemical optimum, but instead represents an average of species-specific N:P ratios.

813 citations


Authors

Showing all 69437 results

NameH-indexPapersCitations
Salim Yusuf2311439252912
Daniel Levy212933194778
Eugene V. Koonin1991063175111
Eric Boerwinkle1831321170971
David L. Kaplan1771944146082
Derek R. Lovley16858295315
Mark Gerstein168751149578
Gang Chen1673372149819
Hongfang Liu1662356156290
Robert Stone1601756167901
Mark E. Cooper1581463124887
Michael B. Sporn15755994605
Cumrun Vafa15750988515
Wolfgang Wagner1562342123391
David M. Sabatini155413135833
Network Information
Related Institutions (5)
University of Minnesota
257.9K papers, 11.9M citations

97% related

Cornell University
235.5K papers, 12.2M citations

97% related

University of Washington
305.5K papers, 17.7M citations

97% related

Columbia University
224K papers, 12.8M citations

97% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023274
20221,028
20218,250
20208,150
20197,397
20186,594