scispace - formally typeset
Search or ask a question
Institution

SABIC

CompanyWixom, Michigan, United States
About: SABIC is a company organization based out in Wixom, Michigan, United States. It is known for research contribution in the topics: Catalysis & Polycarbonate. The organization has 4039 authors who have published 3937 publications receiving 43619 citations. The organization is also known as: Saudi Basic Industries Corporation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed overview of dye pollution, dye classification and dye decolourization/degradation strategies is presented, focusing on the mechanisms involved in comparatively well understood TiO2 photocatalysts.
Abstract: The total annual production of synthetic dye is more than 7 × 105 tons. Annually, through only textile waste effluents, around one thousand tons of non-biodegradable textile dyes are discharged into natural streams and water bodies. Therefore, with growing environmental concerns and environmental awareness there is a need for the removal of dyes from local and industrial water effluents with a cost effective technology. In general, these dyes have been found to be resistant to biological as well as physical treatment technologies. In this regard, heterogeneous advanced oxidation processes (AOPs), involving photo-catalyzed degradation of dyes using semiconductor nanoparticles is considered as an efficient cure for dye pollution. In the last two decades TiO2 has received considerable interest because of its high potential as a photocatalyst to degrade a wide range of organic material including dyes. This review starts with (i) a brief overview on dye pollution, dye classification and dye decolourization/degradation strategies; (ii) focuses on the mechanisms involved in comparatively well understood TiO2 photocatalysts and (iii) discusses recent advancements to enhance TiO2 photocatalytic efficiency by (a) doping with metals, non-metals, transition metals, noble metals and lanthanide ions, (b) structural modifications of TiO2 and (c) immobilization of TiO2 by using various supports to make it a flexible and cost-effective commercial dye treatment technology.

911 citations

Journal ArticleDOI
TL;DR: This review encompasses the approaches and the wide range of methodologies that have been employed over the last five years in the preparation and functionalisation of nanoporous carbon materials via incorporation of metals, non-metal heteroatoms, multiple heteroatOMs, and various surface functional groups that mostly dictate their place in a widerange of practical applications.
Abstract: Functionalized nanoporous carbon materials have attracted the colossal interest of the materials science fraternity owing to their intriguing physical and chemical properties including a well-ordered porous structure, exemplary high specific surface areas, electronic and ionic conductivity, excellent accessibility to active sites, and enhanced mass transport and diffusion. These properties make them a special and unique choice for various applications in divergent fields such as energy storage batteries, supercapacitors, energy conversion fuel cells, adsorption/separation of bulky molecules, heterogeneous catalysts, catalyst supports, photocatalysis, carbon capture, gas storage, biomolecule detection, vapour sensing and drug delivery. Because of the anisotropic and synergistic effects arising from the heteroatom doping at the nanoscale, these novel materials show high potential especially in electrochemical applications such as batteries, supercapacitors and electrocatalysts for fuel cell applications and water electrolysis. In order to gain the optimal benefit, it is necessary to implement tailor made functionalities in the porous carbon surfaces as well as in the carbon skeleton through the comprehensive experimentation. These most appealing nanoporous carbon materials can be synthesized through the carbonization of high carbon containing molecular precursors by using soft or hard templating or non-templating pathways. This review encompasses the approaches and the wide range of methodologies that have been employed over the last five years in the preparation and functionalisation of nanoporous carbon materials via incorporation of metals, non-metal heteroatoms, multiple heteroatoms, and various surface functional groups that mostly dictate their place in a wide range of practical applications.

653 citations

Journal ArticleDOI
TL;DR: This review article summarizes and highlights the existing literature covering every aspect of Mesoporous carbon nitrides including their templating synthesis, modification and functionalization, and potential applications of these MCN materials with an overview of the key and relevant results.
Abstract: Mesoporous carbon nitrides (MCNs) with large surface areas and uniform pore diameters are unique semiconducting materials and exhibit highly versatile structural and excellent physicochemical properties, which promote their application in diverse fields such as metal free catalysis, photocatalytic water splitting, energy storage and conversion, gas adsorption, separation, and even sensing. These fascinating MCN materials can be obtained through the polymerization of different aromatic and/or aliphatic carbons and high nitrogen containing molecular precursors via hard and/or soft templating approaches. One of the unique characteristics of these materials is that they exhibit both semiconducting and basic properties, which make them excellent platforms for the photoelectrochemical conversion and sensing of molecules such as CO2, and the selective sensing of toxic organic acids. The semiconducting features of these materials are finely controlled by varying the nitrogen content or local electronic structure of the MCNs. The incorporation of different functionalities including metal nanoparticles or organic molecules is further achieved in various ways to develop new electronic, semiconducting, catalytic, and energy harvesting materials. Dual functionalities including acidic and basic groups are also introduced in the wall structure of MCNs through simple UV-light irradiation, which offers enzyme-like properties in a single MCN system. In this review article, we summarize and highlight the existing literature covering every aspect of MCNs including their templating synthesis, modification and functionalization, and potential applications of these MCN materials with an overview of the key and relevant results. A special emphasis is given on the catalytic applications of MCNs including hydrogenation, oxidation, photocatalysis, and CO2 activation.

490 citations

Journal ArticleDOI
TL;DR: It is reported that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials.
Abstract: Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

465 citations

Journal ArticleDOI
TL;DR: The emerging trends in major porous adsorbents such as MOFs, zeolites, POPs, porous carbons, and mesoporous materials for CO2 capture and conversion are discussed and their surface texture and chemistry and the influence of various other features on their efficiency, selectivity, and recyclability are explained and compared thoroughly.
Abstract: The presence of an excessive concentration of CO2 in the atmosphere needs to be curbed with suitable measures including the reduction of CO2 emissions at stationary point sources such as power plants through carbon capture technologies and subsequent conversion of the captured CO2 into non-polluting clean fuels/chemicals using photo and/or electrocatalytic pathways. Porous materials have attracted much attention for carbon capture and in the recent past; they have witnessed significant advancements in their design and implementation for CO2 capture and conversion. In this context, the emerging trends in major porous adsorbents such as MOFs, zeolites, POPs, porous carbons, and mesoporous materials for CO2 capture and conversion are discussed. Their surface texture and chemistry, and the influence of various other features on their efficiency, selectivity, and recyclability for CO2 capture and conversion are explained and compared thoroughly. The scientific and technical advances on the material structure versus CO2 capture and conversion provide deep insights into designing effective porous materials. The review concludes with a summary, which compiles the key challenges in the field, current trends and critical challenges in the development of porous materials, and future research directions combined with possible solutions for realising the deployment of porous materials in CO2 capture and conversion.

371 citations


Authors

Showing all 4040 results

NameH-indexPapersCitations
Graham J. Hutchings9799544270
Muhammad Imran94305351728
Douglas W. Stephan8966334060
Husam N. Alshareef8958828847
Wei Chu8067028771
Ajayan Vinu7349719624
Oren A. Scherman6427416629
Anil K. Bhowmick5858415555
Hicham Idriss5525511070
Jillian M. Buriak5435412563
Bernhard Blümich5453912466
Sandro Gambarotta542789221
Muhammad Nadeem524099649
Vincenzo Busico501816420
Andreas Heise491917142
Network Information
Related Institutions (5)
ExxonMobil
23.7K papers, 535.7K citations

80% related

Dalian Institute of Chemical Physics
17.1K papers, 577.7K citations

80% related

Beijing University of Chemical Technology
25.5K papers, 587.4K citations

79% related

East China University of Science and Technology
36.4K papers, 763.1K citations

78% related

DSM
14K papers, 493.4K citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20223
2021112
2020227
2019250
2018181
2017295