scispace - formally typeset
Search or ask a question
Institution

Saint Louis University

EducationSt Louis, Missouri, United States
About: Saint Louis University is a education organization based out in St Louis, Missouri, United States. It is known for research contribution in the topics: Population & Health care. The organization has 18927 authors who have published 34895 publications receiving 1267475 citations. The organization is also known as: SLU & St. Louis University.


Papers
More filters
Journal ArticleDOI
TL;DR: An efficient derivation method and characterization of mesenchymal stem cells from hESCs (hESCd-MSCs) that have multilineage differentiation potential and are capable of producing fat, cartilage, and bone in vitro are described.
Abstract: Development of clinically relevant regenerative medicine therapies using human embryonic stem cells (hESCs) requires production of a simple and readily expandable cell population that can be directed to form functional 3D tissue in an in vivo environment. We describe an efficient derivation method and characterization of mesenchymal stem cells (MSCs) from hESCs (hESCd-MSCs) that have multilineage differentiation potential and are capable of producing fat, cartilage, and bone in vitro. Furthermore, we highlight their in vivo survival and commitment to the chondrogenic lineage in a microenvironment comprising chondrocyte-secreted morphogenetic factors and hydrogels. Normal cartilage architecture was established in rat osteochondral defects after treatment with chondrogenically-committed hESCd-MSCs. In view of the limited available cell sources for tissue engineering applications, these embryonic-derived cells show significant potential in musculoskeletal tissue regeneration applications.

276 citations

Journal ArticleDOI
01 Sep 1985-Chest
TL;DR: It is concluded that patients with obstructive sleep apnea are at relatively low risk of developing ventricular arrhythmias providedSaO2 remains greater than 60 percent, while those with SaO2 below 60 percent are at increased risk and should be managed accordingly.

276 citations

Journal ArticleDOI
TL;DR: It is reported that BRCA proteins prevent nucleolytic degradation by protecting replication forks that have undergone fork reversal upon drug treatment, and a MUS81 and POLD3-dependent mechanism of rescue following the withdrawal of genotoxic agent.
Abstract: The breast cancer susceptibility proteins BRCA1 and BRCA2 have emerged as key stabilizing factors for the maintenance of replication fork integrity following replication stress. In their absence, stalled replication forks are extensively degraded by the MRE11 nuclease, leading to chemotherapeutic sensitivity. Here we report that BRCA proteins prevent nucleolytic degradation by protecting replication forks that have undergone fork reversal upon drug treatment. The unprotected regressed arms of reversed forks are the entry point for MRE11 in BRCA-deficient cells. The CtIP protein initiates MRE11-dependent degradation, which is extended by the EXO1 nuclease. Next, we show that the initial limited resection of the regressed arms establishes the substrate for MUS81 in BRCA2-deficient cells. In turn, MUS81 cleavage of regressed forks with a ssDNA tail promotes POLD3-dependent fork rescue. We propose that targeting this pathway may represent a new strategy to modulate BRCA2-deficient cancer cell response to chemotherapeutics that cause fork degradation. BRCA proteins have emerged as key stabilizing factors for the maintenance of replication forks following replication stress. Here the authors describe how reversed replication forks are degraded in the absence of BRCA2, and a MUS81 and POLD3-dependent mechanism of rescue following the withdrawal of genotoxic agent.

276 citations

Journal ArticleDOI
TL;DR: A second methionine aminopeptidase (Met-AP2) is described in Saccharomyces cerevisiae, encoded by MAP2, which was cloned as a suppressor of the slow-growth phenotype of the map1 null strain and was purified by immunoaffinity chromatography and shown to contain Met-AP activity.
Abstract: We previously characterized a methionine aminopeptidase (EC 3.4.11.18; Met-AP1; also called peptidase M) in Saccharomyces cerevisiae, which differs from its prokaryotic homologues in that it (i) contains an N-terminal zinc-finger domain and (ii) does not produce lethality when disrupted, although it does slow growth dramatically; it is encoded by a gene called MAP1. Here we describe a second methionine aminopeptidase (Met-AP2) in S. cerevisiae, encoded by MAP2, which was cloned as a suppressor of the slow-growth phenotype of the map1 null strain. The DNA sequence of MAP2 encodes a protein of 421 amino acids that shows 22% identity with the sequence of yeast Met-AP1. Surprisingly, comparison with sequences in the GenBank data base showed that the product of MAP2 has even greater homology (55% identity) with rat p67, which was characterized as an initiation factor 2-associated protein but not yet shown to have Met-AP activity. Transformants of map1 null cells expressing MAP2 in a high-copy-number plasmid contained 3- to 12-fold increases in Met-AP activity on different peptide substrates. The epitope-tagged suppressor gene product was purified by immunoaffinity chromatography and shown to contain Met-AP activity. To evaluate the physiological significance of Met-AP2, the MAP2 gene was deleted from wild-type and map1 null yeast strains. The map2 null strain, like the map1 null strain, is viable but with a slower growth rate. The map1, map2 double-null strains are nonviable. Thus, removal of N-terminal methionine is an essential function in yeast, as in prokaryotes, but yeast require two methionine aminopeptidases to provide the essential function which can only be partially provided by Met-AP1 or Met-AP2 alone.

276 citations

Journal ArticleDOI
TL;DR: In this article, two potential mediators of such effects (entrepreneurs' success in obtaining information and essential resources) were investigated, and data were collected in a culture not included in previous studies (China).

276 citations


Authors

Showing all 19076 results

NameH-indexPapersCitations
Douglas G. Altman2531001680344
John E. Morley154137797021
Roberto Romero1511516108321
Daniel S. Berman141136386136
Gregory J. Gores14168666269
Thomas J. Smith1401775113919
Richard T. Lee13181062164
George K. Aghajanian12127748203
Reza Malekzadeh118900139272
Robert N. Weinreb117112459101
Leslee J. Shaw11680861598
Thomas J. Ryan11667567462
Josep M. Llovet11639983871
Robert V. Farese11547348754
Michael Horowitz11298246952
Network Information
Related Institutions (5)
University of Pittsburgh
201K papers, 9.6M citations

95% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

95% related

Yale University
220.6K papers, 12.8M citations

94% related

Duke University
200.3K papers, 10.7M citations

94% related

University of California, San Francisco
186.2K papers, 12M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202344
2022233
20211,619
20201,600
20191,457
20181,375