scispace - formally typeset
Search or ask a question
Institution

Saint Louis University

EducationSt Louis, Missouri, United States
About: Saint Louis University is a education organization based out in St Louis, Missouri, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 18927 authors who have published 34895 publications receiving 1267475 citations. The organization is also known as: SLU & St. Louis University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors proposed process models of turnover focus on how people quit and content models focus on why, and test whether motives relate systematically to decision processes, classified 1...
Abstract: Process models of turnover focus on how people quit; content models focus on why. To integrate these approaches and test whether motives relate systematically to decision processes, we classified 1...

378 citations

Book ChapterDOI
TL;DR: It is demonstrated that aminoguanidine selectively inhibits the cytokine-inducible isoform of NO synthase which appears to be responsible for the excess production of NO linked to these disease states.
Abstract: Overproduction of the free radical nitric oxide (NO) has been implicated in the pathogenesis of a variety of inflammatory and immunologically mediated diseases as well as complications of diabetes. In the present study we have demonstrated that aminoguanidine selectively inhibits the cytokine-inducible isoform of NO synthase which appears to be responsible for the excess production of NO linked to these disease states. By using organ, cell, and enzyme-based measurements we have shown that aminoguanidine is equipotent to NG-monomethyl-L-arginine (L-NMA) as an inhibitor of the cytokine-induced isoform of NO synthase but is 10 to 100-fold less potent as an inhibitor of the constitutive isoform. Thus, aminoguanidine may be useful as a selective inhibitor of the inducible NO synthase in the treatment of disease states characterized by the pathological overproduction of NO.

377 citations

Journal ArticleDOI
TL;DR: The guideline work group concluded that a comprehensive approach to risk assessment should replace decisions based on assessments of single risk factors in isolation, and proposed a framework for quantitative risk assessment in the donor candidate evaluation and defensible shared decision making.
Abstract: The 2017 Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline on the Evaluation and Care of Living Kidney Donors is intended to assist medical professionals who evaluate living kidney donor candidates and provide care before, during and after donation. The guideline development process followed the Grades of Recommendation Assessment, Development, and Evaluation (GRADE) approach and guideline recommendations are based on systematic reviews of relevant studies that included critical appraisal of the quality of the evidence and the strength of recommendations. However, many recommendations, for which there was no evidence or no systematic search for evidence was undertaken by the Evidence Review Team, were issued as ungraded expert opinion recommendations. The guideline work group concluded that a comprehensive approach to risk assessment should replace decisions based on assessments of single risk factors in isolation. Original data analyses were undertaken to produce a "proof-in-concept" risk-prediction model for kidney failure to support a framework for quantitative risk assessment in the donor candidate evaluation and defensible shared decision making. This framework is grounded in the simultaneous consideration of each candidate's profile of demographic and health characteristics. The processes and framework for the donor candidate evaluation are presented, along with recommendations for optimal care before, during, and after donation. Limitations of the evidence are discussed, especially regarding the lack of definitive prospective studies and clinical outcome trials. Suggestions for future research, including the need for continued refinement of long-term risk prediction and novel approaches to estimating donation-attributable risks, are also provided.In citing this document, the following format should be used: Kidney Disease: Improving Global Outcomes (KDIGO) Living Kidney Donor Work Group. KDIGO Clinical Practice Guideline on the Evaluation and Care of Living Kidney Donors. Transplantation. 2017;101(Suppl 8S):S1-S109.

376 citations

Journal ArticleDOI
TL;DR: Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats.
Abstract: The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of .50 species known as the ‘‘Fusarium solani species complex’’. Members of this complex have diverse biological properties including the ability to cause disease on .100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species’ diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches.

376 citations


Authors

Showing all 19076 results

NameH-indexPapersCitations
Douglas G. Altman2531001680344
John E. Morley154137797021
Roberto Romero1511516108321
Daniel S. Berman141136386136
Gregory J. Gores14168666269
Thomas J. Smith1401775113919
Richard T. Lee13181062164
George K. Aghajanian12127748203
Reza Malekzadeh118900139272
Robert N. Weinreb117112459101
Leslee J. Shaw11680861598
Thomas J. Ryan11667567462
Josep M. Llovet11639983871
Robert V. Farese11547348754
Michael Horowitz11298246952
Network Information
Related Institutions (5)
University of Pittsburgh
201K papers, 9.6M citations

95% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

95% related

Yale University
220.6K papers, 12.8M citations

94% related

Duke University
200.3K papers, 10.7M citations

94% related

University of California, San Francisco
186.2K papers, 12M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202344
2022233
20211,618
20201,600
20191,457
20181,375