scispace - formally typeset
Search or ask a question
Institution

Samsung

CompanySeoul, South Korea
About: Samsung is a company organization based out in Seoul, South Korea. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134067 authors who have published 163691 publications receiving 2057505 citations. The organization is also known as: Samsung Group & Samsung chaebol.


Papers
More filters
Patent
24 Mar 2016
TL;DR: In this article, a first user equipment (UE) in a wireless vehicular communication network is considered, where the first UE receives a plurality of messages including control and data messages from at least one second UE using multiple resource pools.
Abstract: A method of a first user equipment (UE) in a wireless vehicular communication network. The method includes receiving a plurality of messages including control and data messages from at least one second UE using at least one of multiple resource pools, wherein the plurality of messages comprise event-triggered or periodic traffic and the multiple resource pools comprise at least one of dedicated or shared resource pools. The method further includes determining the at least one of the multiple resource pools to transmit the plurality of messages to the at least one second UE, wherein multiple traffic types or priorities are multiplexed in the at least one of the multiple resource pools. The method further includes dynamically adjusting resource selection of the first UE within the at least one of the multiple resource pools based on a state of the wireless vehicular communication network and directly communicating the plurality of messages to the at least one second UE using the at least one of the multiple resource pools.

183 citations

Journal ArticleDOI
TL;DR: This work employed Si-Ge alloy as well as nanowire structures to maximize the depletion of heat-carrying phonons and results in a thermal conductivity as low as ∼1.2 W/m-K at 450 K, showing a large thermoelectric figure-of-merit (ZT) of ∼0.46.
Abstract: The strongly correlated thermoelectric properties have been a major hurdle for high-performance thermoelectric energy conversion. One possible approach to avoid such correlation is to suppress phonon transport by scattering at the surface of confined nanowire structures. However, phonon characteristic lengths are broad in crystalline solids, which makes nanowires insufficient to fully suppress heat transport. Here, we employed Si–Ge alloy as well as nanowire structures to maximize the depletion of heat-carrying phonons. This results in a thermal conductivity as low as ∼1.2 W/m-K at 450 K, showing a large thermoelectric figure-of-merit (ZT) of ∼0.46 compared with those of SiGe bulks and even ZT over 2 at 800 K theoretically. All thermoelectric properties were “simultaneously” measured from the same nanowires to facilitate accurate ZT measurements. The surface-boundary scattering is prominent when the nanowire diameter is over ∼100 nm, whereas alloying plays a more important role in suppressing phonon trans...

183 citations

Journal ArticleDOI
TL;DR: This article gives a pragmatic definition of 4G derived from a new user-centric methodology that considers the user as the "cornerstone" of the design and contributes to the identification of the real technical step-up of4G with respect to 3G.
Abstract: The ever-increasing growth of user demand, the limitations of the third generation of wireless mobile communication systems, and the emergence of new mobile broadband technologies on the market have brought researchers and industries to a thorough reflection on the fourth generation. Many prophetic visions have appeared in the literature presenting 4G as the ultimate boundary of wireless mobile communication without any limit to its potential, but in practical terms not giving any design rules and thus any definition of it. In this article we give a pragmatic definition of 4G derived from a new user-centric methodology that considers the user as the "cornerstone" of the design. In this way, we devise fundamental user scenarios that implicitly reveal the key features of 4G, which are then expressed explicitly in a new framework - the "user-centric" system - that describes the various level of interdependency among them. This approach consequently contributes to the identification of the real technical step-up of 4G with respect to 3G. Finally, an example of a potential 4G application is also given in order to demonstrate the validity of the overall methodology

183 citations

Patent
11 Jan 2006
TL;DR: In this paper, the authors provided methods of fabricating a silicon-doped metal oxide layer on a semiconductor substrate using an atomic layer deposition technique, which includes an operation of repeatedly performing a metal-oxide layer formation cycle K times and an operation that repeatedly performs a silicon doped HfO 2 ) formation cycle Q times, where K and Q are integers ranging from 1 to about 10 respectively.
Abstract: There are provided methods of fabricating a silicon-doped metal oxide layer on a semiconductor substrate using an atomic layer deposition technique. The methods include an operation of repeatedly performing a metal oxide layer formation cycle K times and an operation of repeatedly performing a silicon-doped metal oxide layer formation cycle Q times. At least one of the values K and Q is an integer of 2 or more. K and Q are integers ranging from 1 to about 10 respectively. The metal oxide layer formation cycle includes the steps of supplying a metal source gas to a reactor containing the substrate, and then injecting an oxide gas into the reactor. The silicon-doped metal oxide layer formation cycle includes supplying a metal source gas including silicon into a reactor containing the substrate, and then injecting an oxide gas into the reactor. The sequence of operations of repeatedly performing the metal oxide layer formation cycle K times, followed by repeatedly performing the silicon-doped metal oxide layer formation cycle Q times, is performed one or more times until a silicon-doped metal oxide layer with a desired thickness is formed on the substrate. In addition, a method of fabricating a silicon-doped hafnium oxide (Si-doped HfO 2 ) layer according to a similar invention method is also provided.

183 citations

Proceedings ArticleDOI
01 Dec 2010
TL;DR: A new set of edge-adaptive transforms (EATs) is presented as an alternative to the standard DCTs used in image and video coding applications, and provides up to 29% bit rate reduction for a fixed quality in the synthesized views.
Abstract: In this work a new set of edge-adaptive transforms (EATs) is presented as an alternative to the standard DCTs used in image and video coding applications. These transforms avoid filtering across edges in each image block, thus, they avoid creating large high frequency coefficients. These transforms are then combined with the DCT in H.264/AVC and a transform mode selection algorithm is used to choose between DCT and EAT in an RD-optimized manner. These transforms are applied to coding depth maps used for view synthesis in a multi-view video coding system, and provides up to 29% bit rate reduction for a fixed quality in the synthesized views.

183 citations


Authors

Showing all 134111 results

NameH-indexPapersCitations
Yi Cui2201015199725
Hyun-Chul Kim1764076183227
Hannes Jung1592069125069
Yongsun Kim1562588145619
Yu Huang136149289209
Robert W. Heath128104973171
Shuicheng Yan12381066192
Shi Xue Dou122202874031
Young Hee Lee122116861107
Alan L. Yuille11980478054
Yang-Kook Sun11778158912
Sang Yup Lee117100553257
Guoxiu Wang11765446145
Richard G. Baraniuk10777057550
Jef D. Boeke10645652598
Network Information
Related Institutions (5)
KAIST
77.6K papers, 1.8M citations

93% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Hong Kong University of Science and Technology
52.4K papers, 1.9M citations

90% related

IBM
253.9K papers, 7.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202289
20213,059
20205,735
20195,994
20185,885