scispace - formally typeset
Search or ask a question
Institution

Samsung

CompanySeoul, South Korea
About: Samsung is a company organization based out in Seoul, South Korea. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134067 authors who have published 163691 publications receiving 2057505 citations. The organization is also known as: Samsung Group & Samsung chaebol.


Papers
More filters
Journal ArticleDOI
TL;DR: Noh et al. as discussed by the authors proposed a percolation model based on a network of circuit breakers with two switchable metastable states to explain the reversible resistance switching behavior in polycrystalline TiO2 thin capacitors.
Abstract: The existence of reversible resistance switching (RS) behaviors induced by electric stimulus has been known for some time, and these intriguing physical phenomena have been observed in numerous materials, including oxides. As conventional charge-based random access memory is expected to face a size limit in the near future, a surge of renewed interest has been developed in RS phenomena for possible applications in small nonvolatile memory devices called resistance random access memory (RRAM). Of particular interest is unipolar RS, which shows the RS at two values of applied voltage of the same polarity. The unipolar RS exhibits a much larger resistance change than other RS phenomena, and this greatly simplifies the process of reading the memory state. When fabricated with oxide p-n diodes, memory cells using unipolar RS can be stacked vertically, which has the potential for dramatically increasing memory density. Therefore, unipolar RRAM may be a good candidate for multi-stacked, high density, nonvolatile memory. The most important scientific and technical issues concerning unipolar RS are how it works and the identification of its controlling parameters. Some studies have reported that unipolar RS comes from a homogeneous/inhomogeneous transition of current distribution, while others maintain that it comes from the formation and rupture of conducting filaments. Even with recent extensive studies on unipolar RS, its basic origin is still far from being understood. In addition, no model exists that actually explains how the reversible switching can occur at two values of applied voltage. This lack of a quantitative model poses a major barrier for unipolar RRAM applications. In this study, we describe RS behavior in polycrystalline TiO2 film. To explain the basic mechanism of unipolar RS behavior, we propose a new percolation model based on a network of ‘‘circuit breakers’’ with two switchable metastable states. The random circuit breaker (RCB) network model can explain the long-standing material issue of how unipolar RS occurs. This simple percolation model is different from the conventional percolation models, which have dealt only with static or irreversible dynamic processes. In addition, the RCB network model provides an indication of how to overcome the substantial distribution of switching voltages, which is currently considered the most serious obstacle to practical unipolar RRAM applications. The unipolar RS phenomenon can be explained by the current (I)-voltage (V) curves in Figure 1a, which are derived from measurements of our polycrystalline TiO2 thin capacitors. At the pristine state (green dot), they are in an insulating state. As the external voltage Vext increases from zero and reaches a threshold voltage Vforming, a sudden increase occurs in the current. If the current is not limited to a certain value, here called the compliance current Icomp, the TiO2 capacitor would experience a dielectric breakdown and be destroyed. However, [*] Prof. T. W. Noh, S. C. Chae, S. B. Lee, S. H Chang, Dr. C. Liu ReCOE & FPRD, Department of Physics and Astronomy Seoul National University Seoul 151-747 (Korea) E-mail: twnoh@snu.ac.kr

320 citations

Journal ArticleDOI
TL;DR: In this paper, the number, composition, and aspect ratio of MWCNTs were measured using scanning transmission electron microscopy with an energy-dispersive x-ray analyzer.
Abstract: With the increased production and widespread use of multiwalled carbon nanotubes (MWCNTs), human and environmental exposure to MWCNTs is inevitably increasing. Therefore, this study monitored the possible exposure to MWCNT release in a carbon nanotube research laboratory. To estimate the potential exposure of researchers and evaluate the improvement of the workplace environment after the implementation of protective control measures, personal and area monitoring were conducted in an MWCNT research facility where the researchers handled unrefined materials. The number, composition, and aspect ratio of MWCNTs were measured using scanning transmission electron microscopy with an energy-dispersive x-ray analyzer. The gravimetric concentrations of total dust before any control measures ranged from 0.21 to 0.43 mg/m(3), then decreased to a nondetectable level after implementing the control measures. The number of MWCNTs in the samples obtained from the MWCNT blending laboratory ranged from 172.9 to 193.6 MWCNTs/cc before the control measures, and decreased to 0.018-0.05 MWCNTs/cc after the protective improvements. The real-time monitoring of aerosol particles provided a signature of the MWCNTs released from the blending equipment in laboratory C. In particular, the number size response of an aerodynamic particle sizer with a relatively high concentration in the range of 2 to 3 microm in aerodynamic diameter revealed the evidence of MWCNT exposure. The black carbon mass concentration also increased significantly during the MWCNT release process. Therefore, the present study suggests that the conventional industrial hygiene measures can significantly reduce exposure to airborne MWCNTs and other particulate materials in a nano research facility.

320 citations

Journal ArticleDOI
TL;DR: In this article, a broadband channel estimation algorithm for mmWave multiple input multiple output (MIMO) systems with few-bit analog-to-digital converters (ADCs) is proposed.
Abstract: We develop a broadband channel estimation algorithm for millimeter wave (mmWave) multiple input multiple output (MIMO) systems with few-bit analog-to-digital converters (ADCs). Our methodology exploits the joint sparsity of the mmWave MIMO channel in the angle and delay domains. We formulate the estimation problem as a noisy quantized compressed-sensing problem and solve it using efficient approximate message passing (AMP) algorithms. In particular, we model the angle-delay coefficients using a Bernoulli–Gaussian-mixture distribution with unknown parameters and use the expectation-maximization forms of the generalized AMP and vector AMP algorithms to simultaneously learn the distributional parameters and compute approximately minimum mean-squared error (MSE) estimates of the channel coefficients. We design a training sequence that allows fast, fast Fourier transform based implementation of these algorithms while minimizing peak-to-average power ratio at the transmitter, making our methods scale efficiently to large numbers of antenna elements and delays. We present the results of a detailed simulation study that compares our algorithms to several benchmarks. Our study investigates the effect of SNR, training length, training type, ADC resolution, and runtime on channel estimation MSE, mutual information, and achievable rate. It shows that, in a mmWave MIMO system, the methods we propose to exploit joint angle-delay sparsity allow 1-bit ADCs to perform comparably to infinite-bit ADCs at low SNR, and 4-bit ADCs to perform comparably to infinite-bit ADCs at medium SNR.

319 citations

Patent
Liang Xie1, Xinwen Zhang1, Jean-Pierre Seifert1, Onur Aciicmez1, Afshin Latifi1 
04 Feb 2008
TL;DR: In this paper, an acceptable behavioral pattern data can be generated for a computing system by monitoring the use of a support system (e.g., an operating system, a virtual environment) operating on the computing system.
Abstract: Techniques for detecting unauthorized use (e.g., malicious attacks) of the computing systems (e.g., computing devices) are disclosed. Unauthorized use can be detected based on patterns of use (e.g., behavioral patterns of use typically associated with a human being) of the computing systems. Acceptable behavioral pattern data can be generated for a computing system by monitoring the use of a support system (e.g., an operating system, a virtual environment) operating on the computing system. For example, a plurality of system support provider components of a support system (e.g., system calls, device drivers) can be monitored in order to generate the acceptable behavioral pattern data in a form which effectively defines an acceptable pattern of use (usage pattern) for the monitored system support provider components, thereby allowing detection of unauthorized use of a computing system by detecting any deviation from the acceptable pattern of use of the monitored system support provider components.

317 citations

Journal ArticleDOI
27 Jul 2010-ACS Nano
TL;DR: The sample shows better environmental stability due to the presence of dominant neutral Au atoms on the surface which was confirmed by angle-resolved X-ray photoelectron spectroscopy, which meets the technical target for industrial applications.
Abstract: We propose a new method of layer-by-layer (LbL) doping of thin graphene films. Large area monolayer graphene was synthesized on Cu foil by using the chemical vapor deposition method. Each layer was transferred on a polyethylene terephthalate substrate followed by a salt-solution casting, where the whole process was repeated several times to get LbL-doped thin layers. With this method, sheet resistance was significantly decreased up to ∼80% with little sacrifice in transmittance. Unlike samples fabricated by topmost layer doping, our sample shows better environmental stability due to the presence of dominant neutral Au atoms on the surface which was confirmed by angle-resolved X-ray photoelectron spectroscopy. The sheet resistance of the LbL-doped four-layer graphene (11 × 11 cm2) was 54 Ω/sq at 85% transmittance, which meets the technical target for industrial applications.

317 citations


Authors

Showing all 134111 results

NameH-indexPapersCitations
Yi Cui2201015199725
Hyun-Chul Kim1764076183227
Hannes Jung1592069125069
Yongsun Kim1562588145619
Yu Huang136149289209
Robert W. Heath128104973171
Shuicheng Yan12381066192
Shi Xue Dou122202874031
Young Hee Lee122116861107
Alan L. Yuille11980478054
Yang-Kook Sun11778158912
Sang Yup Lee117100553257
Guoxiu Wang11765446145
Richard G. Baraniuk10777057550
Jef D. Boeke10645652598
Network Information
Related Institutions (5)
KAIST
77.6K papers, 1.8M citations

93% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Hong Kong University of Science and Technology
52.4K papers, 1.9M citations

90% related

IBM
253.9K papers, 7.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202289
20213,060
20205,735
20195,994
20185,885