scispace - formally typeset
Search or ask a question
Institution

Samsung

CompanySeoul, South Korea
About: Samsung is a company organization based out in Seoul, South Korea. It is known for research contribution in the topics: Layer (electronics) & Signal. The organization has 134067 authors who have published 163691 publications receiving 2057505 citations. The organization is also known as: Samsung Group & Samsung chaebol.


Papers
More filters
Patent
29 Jun 2010
TL;DR: In this paper, a rechargeable lithium cell comprising an anode, a separator, a cathode, and an electrolyte or electrolyte solution is characterized, where the anode is a metal capable of being alloyed with lithium and the separator is a non-alloyed metal.
Abstract: A rechargeable lithium cell comprising an anode, a separator, a cathode, and an electrolyte or an electrolyte solution, characterized in that said anode comprises (a) a metal capable of being alloyed with lithium and (b) a metal incapable of being alloyed with lithium, said anode contains lithium when charging is operated, and wherein an anode terminal is extended from a portion formed of said metal (b).

305 citations

Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper adopted a sulfide based electrolyte, Li2S-P2S5 (80:20 mol%) to a rocking chair type lithium ion battery.

305 citations

Journal ArticleDOI
TL;DR: In this article, the electrochemical properties of 1D SnO2 nanomaterials, nanotubes, nanowires, and nanopowders are compared to define the most favorable morphology when used as the electrode material for lithium-ion batteries.
Abstract: The electrochemical performances of 1D SnO2 nanomaterials, nanotubes, nanowires, and nanopowders, are compared to define the most favorable morphology when SnO2 nanomaterials are adopted as the electrode material for lithium-ion batteries. Changes in the morphology of SnO2 are closely related with its electrochemical performance. Some SnO2 nanomaterials feature not only an increased energy density but also enhanced Li+ transfer. The correlation between the morphological characteristics and the electrochemical properties of SnO2 nanomaterials is discussed. The interesting electrochemical results obtained here on SnO2 nanomaterials indicate the possibility of designing and fabricating attractive nanostructured materials for lithium-ion batteries.

303 citations

Journal ArticleDOI
TL;DR: In situ scanning transmission electron microscope experiments verify, at the atomic scale, that the switching effects occur by the formation and annihilation of conducting channels between a top Pt electrode and a TaO2-x base layer, which consist of nanoscale TaO1-x filaments.
Abstract: Electrically induced resistive switching in metal insulator-metal structures is a subject of increasing scientific interest because it is one of the alternatives that satisfies current requirements for universal non-volatile memories. However, the origin of the switching mechanism is still controversial. Here we report the fabrication of a resistive switching device inside a transmission electron microscope, made from a Pt/SiO₂/a-Ta₂O5-x/a-TaO2-x/Pt structure, which clearly shows reversible bipolar resistive switching behaviour. The current-voltage measurements simultaneously confirm each of the resistance states (set, reset and breakdown). In situ scanning transmission electron microscope experiments verify, at the atomic scale, that the switching effects occur by the formation and annihilation of conducting channels between a top Pt electrode and a TaO2-x base layer, which consist of nanoscale TaO1-x filaments. Information on the structure and dimensions of conductive channels observed in situ offers great potential for designing resistive switching devices with the high endurance and large scalability.

302 citations

Journal ArticleDOI
TL;DR: Simulation results show that both schemes effectively compensate the uplink throughput degradation of the macrocell BS due to the cross-tier interference and that the closed- loop control provides better femtocell throughput than the open-loop control at a minimal cost of macrocell throughput.
Abstract: This paper proposes two interference mitigation strategies that adjust the maximum transmit power of femtocell users to suppress the cross-tier interference at a macrocell base station (BS). The open-loop and the closed-loop control suppress the cross-tier interference less than a fixed threshold and an adaptive threshold based on the noise and interference (NI) level at the macrocell BS, respectively. Simulation results show that both schemes effectively compensate the uplink throughput degradation of the macrocell BS due to the cross-tier interference and that the closed-loop control provides better femtocell throughput than the open-loop control at a minimal cost of macrocell throughput.

302 citations


Authors

Showing all 134111 results

NameH-indexPapersCitations
Yi Cui2201015199725
Hyun-Chul Kim1764076183227
Hannes Jung1592069125069
Yongsun Kim1562588145619
Yu Huang136149289209
Robert W. Heath128104973171
Shuicheng Yan12381066192
Shi Xue Dou122202874031
Young Hee Lee122116861107
Alan L. Yuille11980478054
Yang-Kook Sun11778158912
Sang Yup Lee117100553257
Guoxiu Wang11765446145
Richard G. Baraniuk10777057550
Jef D. Boeke10645652598
Network Information
Related Institutions (5)
KAIST
77.6K papers, 1.8M citations

93% related

Nanyang Technological University
112.8K papers, 3.2M citations

91% related

Georgia Institute of Technology
119K papers, 4.6M citations

91% related

Hong Kong University of Science and Technology
52.4K papers, 1.9M citations

90% related

IBM
253.9K papers, 7.4M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202289
20213,059
20205,735
20195,994
20185,885