scispace - formally typeset
Search or ask a question
Institution

San Diego State University

EducationSan Diego, California, United States
About: San Diego State University is a education organization based out in San Diego, California, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 12418 authors who have published 27950 publications receiving 1192375 citations. The organization is also known as: SDSU & San Diego State College.


Papers
More filters
Journal ArticleDOI
TL;DR: A meta-analysis of the neuropsychological effects of MA abuse/dependence revealed broadly medium effect sizes, showing deficits in episodic memory, executive functions, information processing speed, motor skills, language, and visuoconstructional abilities.
Abstract: This review provides a critical analysis of the central nervous system effects of acute and chronic methamphetamine (MA) use, which is linked to numerous adverse psychosocial, neuropsychiatric, and medical problems. A meta-analysis of the neuropsychological effects of MA abuse/dependence revealed broadly medium effect sizes, showing deficits in episodic memory, executive functions, information processing speed, motor skills, language, and visuoconstructional abilities. The neuropsychological deficits associated with MA abuse/dependence are interpreted with regard to their possible neural mechanisms, most notably MA-associated frontostriatal neurotoxicity. In addition, potential explanatory factors are considered, including demographics (e.g., gender), MA use characteristics (e.g., duration of abstinence), and the influence of common psychiatric (e.g., other substance-related disorders) and neuromedical (e.g., HIV infection) comorbidities. Finally, these findings are discussed with respect to their potential contribution to the clinical management of persons with MA abuse/dependence.

605 citations

Journal ArticleDOI
TL;DR: This work proposes the constant-diversity dynamics model, in which the diversity of prokaryotic populations is preserved by phage predation, and provides supporting evidence for this model from metagenomics, mathematical analysis and computer simulations.
Abstract: Not all isolates of a species contain the same set of genes. In this Opinion article, Rodriguez-Valera and colleagues propose the constant-diversity model to account for these differences. In this model, predation by phages promotes bacterial diversity and allows more efficient use of the nutrients in the environment. The remarkable differences that have been detected by metagenomics in the genomes of strains of the same bacterial species are difficult to reconcile with the widely accepted paradigm that periodic selection within bacterial populations will regularly purge genomic diversity by clonal replacement. We have found that many of the genes that differ between strains affect regions that are potential phage recognition targets. We therefore propose the constant-diversity dynamics model, in which the diversity of prokaryotic populations is preserved by phage predation. We provide supporting evidence for this model from metagenomics, mathematical analysis and computer simulations. Periodic selection and phage predation dynamics are not mutually exclusive; we compare their predictions to shed light on the ecological circumstances under which each type of dynamics could predominate.

601 citations

Journal ArticleDOI
TL;DR: Intensive behavior analytic intervention for preschool-age children with autism spectrum disorders is considerably more efficacious than "eclectic" intervention and learning rates at follow-up were substantially higher for children in the IBT group than for either of the other two groups.

600 citations

Journal ArticleDOI
Pelin Yilmaz1, Pelin Yilmaz2, Renzo Kottmann1, Dawn Field, Rob Knight3, Rob Knight4, James R. Cole5, Linda A. Amaral-Zettler6, Jack A. Gilbert7, Jack A. Gilbert8, Jack A. Gilbert9, Ilene Karsch-Mizrachi10, Anjanette Johnston10, Guy Cochrane, Robert Vaughan, Christopher I. Hunter, Joonhong Park11, Norman Morrison12, Philippe Rocca-Serra13, Peter Sterk, Manimozhiyan Arumugam, Mark J. Bailey, Laura K. Baumgartner4, Bruce W. Birren14, Martin J. Blaser15, Vivien Bonazzi10, Timothy F. Booth, Peer Bork, Frederic D. Bushman16, Pier Luigi Buttigieg2, Pier Luigi Buttigieg1, Patrick S. G. Chain17, Patrick S. G. Chain5, Patrick S. G. Chain18, Emily S. Charlson16, Elizabeth K. Costello4, Heather Huot-Creasy19, Peter Dawyndt20, Todd Z. DeSantis21, Noah Fierer4, Jed A. Fuhrman22, Rachel E. Gallery23, Dirk Gevers14, Richard A. Gibbs24, Inigo San Gil25, Antonio Gonzalez4, Jeffrey I. Gordon26, Robert P. Guralnick4, Wolfgang Hankeln2, Wolfgang Hankeln1, Sarah K. Highlander24, Philip Hugenholtz27, Janet K. Jansson18, Janet K. Jansson21, Andrew L. Kau26, Scott T. Kelley28, Jerry Kennedy4, Dan Knights4, Omry Koren29, Justin Kuczynski4, Nikos C. Kyrpides18, Robert Larsen4, Christian L. Lauber4, Teresa M. Legg4, Ruth E. Ley29, Catherine A. Lozupone4, Wolfgang Ludwig30, Donna Lyons4, Eamonn Maguire13, Barbara A. Methé31, Folker Meyer8, Brian D. Muegge26, Sara Nakielny4, Karen E. Nelson31, Diana R. Nemergut4, Josh D. Neufeld32, Lindsay K. Newbold, Anna Oliver, Norman R. Pace4, Giriprakash Palanisamy33, Jörg Peplies, Joseph F. Petrosino24, Lita M. Proctor10, Elmar Pruesse2, Elmar Pruesse1, Christian Quast1, Jeroen Raes34, Sujeevan Ratnasingham35, Jacques Ravel19, David A. Relman36, David A. Relman37, Susanna Assunta-Sansone13, Patrick D. Schloss, Lynn M. Schriml19, Rohini Sinha16, Michelle I. Smith26, Erica Sodergren26, Aymé Spor29, Jesse Stombaugh4, James M. Tiedje5, Doyle V. Ward14, George M. Weinstock26, Doug Wendel4, Owen White19, Andrew S. Whiteley, Andreas Wilke8, Jennifer R. Wortman19, Tanya Yatsunenko26, Frank Oliver Glöckner1, Frank Oliver Glöckner2 
TL;DR: To establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, the minimum information about any (x) sequence is presented (MIxS).
Abstract: Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The ‘environmental packages’ apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.

600 citations

Journal ArticleDOI
TL;DR: The discovery of a previously unidentified bacteriophage present in the majority of published human faecal metagenomes, which is referred to as crAssphage and predicted to have a Bacteroides host for this phage, consistent with Bactseroides-related protein homologues and a unique carbohydrate-binding domain encoded in the phage genome.
Abstract: Metagenomics, or sequencing of the genetic material from a complete microbial community, is a promising tool to discover novel microbes and viruses. Viral metagenomes typically contain many unknown sequences. Here we describe the discovery of a previously unidentified bacteriophage present in the majority of published human faecal metagenomes, which we refer to as crAssphage. Its ~97 kbp genome is six times more abundant in publicly available metagenomes than all other known phages together; it comprises up to 90% and 22% of all reads in virus-like particle (VLP)-derived metagenomes and total community metagenomes, respectively; and it totals 1.68% of all human faecal metagenomic sequencing reads in the public databases. The majority of crAssphage-encoded proteins match no known sequences in the database, which is why it was not detected before. Using a new co-occurrence profiling approach, we predict a Bacteroides host for this phage, consistent with Bacteroides-related protein homologues and a unique carbohydrate-binding domain encoded in the phage genome.

597 citations


Authors

Showing all 12533 results

NameH-indexPapersCitations
David R. Williams1782034138789
James F. Sallis169825144836
Steven Williams144137586712
Larry R. Squire14347285306
Murray B. Stein12874589513
Robert Edwards12177574552
Roberto Kolter12031552942
Jack E. Dixon11540847201
Sonia Ancoli-Israel11552046045
John D. Lambris11465148203
Igor Grant11379155147
Kenneth H. Nealson10848351100
Mark Westoby10831659095
Eric Courchesne10724041200
Marc A. Schuckit10664343484
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Colorado Boulder
115.1K papers, 5.3M citations

94% related

Boston University
119.6K papers, 6.2M citations

94% related

University of Texas at Austin
206.2K papers, 9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022168
20211,595
20201,535
20191,454
20181,262