scispace - formally typeset
Search or ask a question
Institution

San Diego State University

EducationSan Diego, California, United States
About: San Diego State University is a education organization based out in San Diego, California, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 12418 authors who have published 27950 publications receiving 1192375 citations. The organization is also known as: SDSU & San Diego State College.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of an 8-week course in Mindfulness-Based Stress Reduction (MBSR; J. Kabat-Zinn, 1982, 1990) on affective symptoms (depression and anxiety), dysfunctional attitudes, and rumination were described.
Abstract: This study describes the effects of an 8-week course in Mindfulness-Based Stress Reduction (MBSR; J. Kabat-Zinn, 1982, 1990) on affective symptoms (depression and anxiety), dysfunctional attitudes, and rumination. Given the focus of mindfulness meditation (MM) in modifying cognitive processes, it was hypothesized that the primary change in MM practice involves reductions in ruminative tendencies. We studied a sample of individuals with lifetime mood disorders who were assessed prior to and upon completion of an MBSR course. We also compared a waitlist sample matched with a subset of the MBSR completers. Overall, the results suggest that MM practice primarily leads to decreases in ruminative thinking, even after controlling for reductions in affective symptoms and dysfunctional beliefs.

586 citations

Journal ArticleDOI
TL;DR: Environmental and policy interventions were effective in increasing physical activity at school among boys but not girls and the interventions were not effective in reducing fat intake at school.

580 citations

Journal ArticleDOI
TL;DR: Physician-based counseling for physical activity is efficacious in producing short-term increases in moderate physical activity among previously sedentary patients.

580 citations

Journal ArticleDOI
Mansi M. Kasliwal1, Ehud Nakar2, Leo Singer3, Leo Singer4, David L. Kaplan5, David O. Cook1, A. Van Sistine5, R. M. Lau1, Christoffer Fremling1, Ore Gottlieb2, Jacob E. Jencson1, Scott M. Adams1, U. Feindt6, Kenta Hotokezaka7, Sourav Ghosh5, Daniel A. Perley8, Po-Chieh Yu9, Tsvi Piran10, James R. Allison11, James R. Allison12, G. C. Anupama13, Arvind Balasubramanian14, Keith W. Bannister15, John Bally16, Jennifer Barnes17, Sudhanshu Barway, Eric C. Bellm18, Varun Bhalerao19, Deb Sankar Bhattacharya20, Nadejda Blagorodnova1, Joshua S. Bloom21, Joshua S. Bloom22, Patrick Brady5, Chris Cannella1, Deep Chatterjee5, S. B. Cenko3, S. B. Cenko4, B. E. Cobb23, Chris M. Copperwheat8, A. Corsi24, Kaushik De1, Dougal Dobie11, Dougal Dobie12, Dougal Dobie15, S. W. K. Emery25, Phil Evans26, Ori D. Fox27, Dale A. Frail28, C. Frohmaier29, C. Frohmaier30, Ariel Goobar6, Gregg Hallinan1, Fiona A. Harrison1, George Helou1, Tanja Hinderer31, Anna Y. Q. Ho1, Assaf Horesh10, Wing-Huen Ip7, Ryosuke Itoh32, Daniel Kasen21, Hyesook Kim, N. P. M. Kuin25, Thomas Kupfer1, Christene Lynch12, Christene Lynch11, K. K. Madsen1, Paolo A. Mazzali8, Paolo A. Mazzali33, Adam A. Miller34, Adam A. Miller35, Kunal Mooley36, Tara Murphy12, Tara Murphy11, Chow-Choong Ngeow9, David A. Nichols31, Samaya Nissanke31, Peter Nugent21, Peter Nugent22, Eran O. Ofek37, H. Qi5, Robert M. Quimby38, Robert M. Quimby39, Stephan Rosswog6, Florin Rusu40, Elaine M. Sadler12, Elaine M. Sadler11, Patricia Schmidt31, Jesper Sollerman6, Iain A. Steele8, A. R. Williamson31, Y. Xu1, Lin Yan1, Yoichi Yatsu32, C. Zhang5, Weijie Zhao40 
22 Dec 2017-Science
TL;DR: It is demonstrated that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis, which is dissimilar to classical short gamma-ray bursts with ultrarelativistic jets.
Abstract: Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.

579 citations


Authors

Showing all 12533 results

NameH-indexPapersCitations
David R. Williams1782034138789
James F. Sallis169825144836
Steven Williams144137586712
Larry R. Squire14347285306
Murray B. Stein12874589513
Robert Edwards12177574552
Roberto Kolter12031552942
Jack E. Dixon11540847201
Sonia Ancoli-Israel11552046045
John D. Lambris11465148203
Igor Grant11379155147
Kenneth H. Nealson10848351100
Mark Westoby10831659095
Eric Courchesne10724041200
Marc A. Schuckit10664343484
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

95% related

Pennsylvania State University
196.8K papers, 8.3M citations

95% related

University of Colorado Boulder
115.1K papers, 5.3M citations

94% related

Boston University
119.6K papers, 6.2M citations

94% related

University of Texas at Austin
206.2K papers, 9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202345
2022168
20211,595
20201,535
20191,454
20181,262