scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Combustion. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the important changes produced on the electroluminescence characteristics of organic materials due to planar microcavity effects are examined in detail, and the design considerations for and device characteristics of a novel multiple emissive layer LED are also described.
Abstract: The important changes produced on the electroluminescence characteristics of organic materials due to planar microcavity effects are examined in detail. The photon density of states is redistributed such that only certain wavelengths, which correspond to allowed cavity modes, are emitted in a given direction. This enables us to realize color selectivity over a large wavelength (and color coordinate) range with broadband emitters such as 8‐hydroxyquinoline aluminum (Alq), and intensity enhancement in narrow band emitters. The intensity enhancement in Alq‐based cavity light emitting diodes (LEDs) is extensively evaluated both experimentally and theoretically. The design considerations for and device characteristics of a novel multiple emissive layer LED are also described.

309 citations

Journal ArticleDOI
TL;DR: In this paper, a micromechanical analysis for the linear elastic behavior of a low-density foam with open cells is presented, where the foam structure is based on the geometry of Kelvin soap froth with flat faces.
Abstract: A micromechanical analysis for the linear elastic behavior of a low-density foam with open cells is presented. The foam structure is based on the geometry of Kelvin soap froth with flat faces: 14-sided polyhedral cells contain six squares and eight hexagons. Four struts meet at every joint in the perfectly ordered, spatially periodic, open-cell structure. All of the struts and joints have identical shape. Strut-level force-displacement relations are expressed by compliances for stretching, bending, and twisting. We consider arbitrary homogeneous deformations of the foam and present analytic results for the force, moment, and displacement at each strut midpoint and the rotation at each joint. The effective stress-strain relations for the foam, which has cubic symmetry, are represented by three elastic constants, a bulk modulus, and two shear moduli, that depend on the strut compliances. When these compliances are evaluated for specific strut geometries, the shear moduli are nearly equal and therefore the elastic response is nearly isotropic. The variational results of Hashin and Shtrikman are used to calculate the effective isotropic shear modulus of a polycrystal that contain grains of Kelvin foam.

308 citations

Proceedings ArticleDOI
23 Jun 1980
TL;DR: The testability analysis algorithms are reviewed and their implementation in the SCOAP program is described.
Abstract: SCOAP is a program developed at Sandia National Laboratories for the analysis of digital circuit testability. Testability is related to the difficulty of controlling and observing the logical values of internal nodes from circuit inputs and outputs, respectively. This paper reviews the testability analysis algorithms and describes their implementation in the SCOAP program.

308 citations

Journal ArticleDOI
01 Jan 2005
TL;DR: Active Thermochemical Tables (ATcT) as discussed by the authors is a new paradigm of how to obtain accurate, reliable, and internally consistent thermochemistry and overcome the limitations that are intrinsic to the traditional sequential approach to thermochemistry.
Abstract: Active Thermochemical Tables (ATcT) are a good example of a significant breakthrough in chemical science that is directly enabled by the US DOE SciDAC initiative. ATcT is a new paradigm of how to obtain accurate, reliable, and internally consistent thermochemistry and overcome the limitations that are intrinsic to the traditional sequential approach to thermochemistry. The availability of high-quality consistent thermochemical values is critical in many areas of chemistry, including the development of realistic predictive models of complex chemical environments such as combustion or the atmosphere, or development and improvement of sophisticated high-fidelity electronic structure computational treatments. As opposed to the traditional sequential evolution of thermochemical values for the chemical species of interest, ATcT utilizes the Thermochemical Network (TN) approach. This approach explicitly exposes the maze of inherent interdependencies normally ignored by the conventional treatment, and allows, inter alia, a statistical analysis of the individual measurements that define the TN. The end result is the extraction of the best possible thermochemistry, based on optimal use of all the currently available knowledge, hence making conventional tabulations of thermochemical values obsolete. Moreover, ATcT offer a number of additional features that are neither present nor possible in the traditional approach. With ATcT, new knowledge can be painlessly propagated through all affected thermochemical values. ATcT also allows hypothesis testing and evaluation, as well as discovery of weak links in the TN. The latter provides pointers to new experimental or theoretical determinations that can most efficiently improve the underlying thermochemical body of knowledge.

307 citations

Journal ArticleDOI
01 Mar 2002
TL;DR: The Zoltan library simplifies the load-balancing, data movement, unstructured-communication, and memory usage difficulties that arise in dynamic applications such as adaptive finite-element methods, particle methods, and crash simulations.
Abstract: The Zoltan library is a collection of data management services for parallel, unstructured, adaptive, and dynamic applications that is available as open-source software. It simplifies the load-balancing, data movement, unstructured-communication, and memory usage difficulties that arise in dynamic applications such as adaptive finite-element methods, particle methods, and crash simulations. Zoltan's data-structure-neutral design also lets a wide range of applications use it without imposing restrictions on application data structures. Its object-based interface provides a simple and inexpensive way for application developers to use the library and researchers to make new capabilities available under a common interface.

307 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514