scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Thin film. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.
Topics: Laser, Thin film, Hydrogen, Combustion, Silicon


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, all-dielectric Huygens' metasurfaces are demonstrated for NIR frequencies using arrays of silicon nanodisks as metaatoms.
Abstract: Optical metasurfaces have developed as a breakthrough concept for advanced wave-front engineering enabled by subwavelength resonant nanostructures. However, reflection and/or absorption losses as well as low polarization-conversion efficiencies pose a fundamental obstacle for achieving high transmission efficiencies that are required for practical applications. Here, for the first time to our knowledge, highly efficient all-dielectric metasurfaces are demonstrated for NIR frequencies using arrays of silicon nanodisks as metaatoms. The main features of Huygens' sources are employed, namely, spectrally overlapping crossed electric and magnetic dipole resonances of equal strength, to demonstrate Huygens' surfaces with full transmission-phase coverage of 360° and near-unity transmission. Full-phase coverage combined with high efficiency in transmission are experimentally confirmed. Based on these key properties, all-dielectric Huygens' metasurfaces can become a new paradigm for flat optical devices, including beam-steering, beam-shaping, and focusing, as well as holography and dispersion control.

1,159 citations

Journal ArticleDOI
TL;DR: In this article, a two-phase mixture theory is presented which describes the deflagration-to-detonation transition (DDT) in reactive granular materials, based on the continuum theory of mixtures formulated to include the compressibility of all phases and the compaction behavior of the granular material.

1,155 citations

Journal ArticleDOI
02 Jan 2017-PeerJ
TL;DR: The architecture of SymPy is presented, a description of its features, and a discussion of select domain specific submodules are discussed, to become the standard symbolic library for the scientific Python ecosystem.
Abstract: SymPy is an open source computer algebra system written in pure Python. It is built with a focus on extensibility and ease of use, through both interactive and programmatic applications. These characteristics have led SymPy to become a popular symbolic library for the scientific Python ecosystem. This paper presents the architecture of SymPy, a description of its features, and a discussion of select submodules. The supplementary material provide additional examples and further outline details of the architecture and features of SymPy.

1,126 citations

Journal ArticleDOI
TL;DR: This work describes an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors, opening a path towards extreme interconnectivity comparable to the human brain.
Abstract: A neuromorphic device based on the stable electrochemical fine-tuning of the conductivity of an organic ionic/electronic conductor is realized. These devices show high linearity, low noise and extremely low switching voltage. The brain is capable of massively parallel information processing while consuming only ∼1–100 fJ per synaptic event1,2. Inspired by the efficiency of the brain, CMOS-based neural architectures3 and memristors4,5 are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODe switches at low voltage and energy ( 500 distinct, non-volatile conductance states within a ∼1 V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems6,7. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.

1,119 citations

Journal ArticleDOI
TL;DR: The overall Trilinos design is presented, describing the use of abstract interfaces and default concrete implementations and how packages can be combined to rapidly develop new algorithms.
Abstract: The Trilinos Project is an effort to facilitate the design, development, integration, and ongoing support of mathematical software libraries within an object-oriented framework for the solution of large-scale, complex multiphysics engineering and scientific problems. Trilinos addresses two fundamental issues of developing software for these problems: (i) providing a streamlined process and set of tools for development of new algorithmic implementations and (ii) promoting interoperability of independently developed software.Trilinos uses a two-level software structure designed around collections of packages. A Trilinos package is an integral unit usually developed by a small team of experts in a particular algorithms area such as algebraic preconditioners, nonlinear solvers, etc. Packages exist underneath the Trilinos top level, which provides a common look-and-feel, including configuration, documentation, licensing, and bug-tracking.Here we present the overall Trilinos design, describing our use of abstract interfaces and default concrete implementations. We discuss the services that Trilinos provides to a prospective package and how these services are used by various packages. We also illustrate how packages can be combined to rapidly develop new algorithms. Finally, we discuss how Trilinos facilitates high-quality software engineering practices that are increasingly required from simulation software.

1,109 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514