scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Thin film. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.
Topics: Laser, Thin film, Hydrogen, Combustion, Silicon


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it was shown that helium atoms in a metal lattice are able to cluster with each other, producing vacancies and nearby self-interstitial defects, and that the binding energy of each additional helium atom to these clusters increases with helium concentration.
Abstract: Atomistic calculations are presented which demonstrate that helium atoms in a metal lattice are able to cluster with each other, producing vacancies and nearby self-interstitial defects. Even a small number of helium atoms is found to be sufficient to create these large distortions. As few as five interstitial helium atoms can spontaneously produce a lattice vacancy and nearby self-interstitial. An eight-helium-atom cluster gives rise to two such defects, and 16 helium atoms to more than five self-interstitial vacancy pairs. It was noted that the self-interstitials prefer to agglomerate on the same "side" of the helium cluster rather than to spread themselves out uniformly. The binding energy of each additional helium atom to these clusters increases with helium concentration and the trap is apparently unsaturable. A rate theory using these atomistic binding energies has been used to calculate the kinetics of helium-bubble nucleation and growth. The results are consistent with measurements of the properties of helium resulting from tritium decay.

306 citations

Journal ArticleDOI
01 Sep 2001-JOM
TL;DR: In this article, thermal imaging and metallographic analysis were used to study LENS processing of 316 stainless steel and H13 tool steel, resulting in cooling rates at the solid-liquid interface ranging from 200-6,000 Ks−1.
Abstract: Thermal imaging and metallographic analysis were used to study Laser Engineered Net Shaping (LENS™) processing of 316 stainless steel and H13 tool steel. The cooling rates at the solid-liquid interface were measured over a range of conduction conditions. The length scale of the molten zone controls cooling rates during solidification in direct metal deposition. In LENS processing, the molten zone ranges from 0.5 mm in length to 1.5 mm, resulting in cooling rates at the solid-liquid interface ranging from 200–6,000 Ks−1.

306 citations

Journal ArticleDOI
TL;DR: A suite of automated tortuosity measures for blood vessel segments extracted from RGB retinal images are described and it is discussed how the accuracy of these measures can be influence by the method used to extract theBlood vessel segments.

305 citations

Journal ArticleDOI
TL;DR: The out-of-plane distortions of porphyrins in hemoproteins are characterized by displacements along the lowest-frequency out- of-plane normal coordinates of the D4h-symmetric macrocycle, and x-ray crystal structures are analyzed using a computational procedure developed for determining these orthogonal displacements.

305 citations

Journal ArticleDOI
TL;DR: The first generation of alternative proton exchange membranes (PEMs) has focused on wholly aromatic, disulfonated poly(arylene ether sulfone) random copolymers as discussed by the authors.
Abstract: Research and development efforts have been focussed over the last five years towards the preparation of new, but potentially commercially viable low-cost copolymers for use as proton exchange membrane for fuel cell and other membrane applications. Our primary efforts centered on the direct synthesis of disulfonated copolymers via step-polycondensation methods. These novel series of disulfonated copolymers include optionally fluorinated poly(arylene ethers), poly(thioethers), polyimides, polybenzimidazoles, and polybenzoxazoles, as well as multiblock copolymer systems. The first generation of alternative proton exchange membranes (PEMs) has focused on wholly aromatic, disulfonated poly(arylene ether sulfone) random copolymers. Detailed herein are the development and current state of these disulfonated poly(arylene ether sulfone) copolymers and their fuel cell performance in both hydrogen-air PEMFCs and direct methanol fuel cells (DMFC).

305 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514