scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Combustion. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.


Papers
More filters
Journal ArticleDOI
TL;DR: An ammonium-enriched anion exchange ionomer that improves the performance of an AEM electrolyser to levels approaching that of state-of-the-art proton exchange membrane electrolysers is reported in this article.
Abstract: Alkaline anion exchange membrane (AEM) electrolysers to produce hydrogen from water are still at an early stage of development, and their performance is far lower than that of systems based on proton exchange membranes. Here, we report an ammonium-enriched anion exchange ionomer that improves the performance of an AEM electrolyser to levels approaching that of state-of-the-art proton exchange membrane electrolysers. Using rotating-disk electrode experiments, we show that a high pH (>13) in the electrode binder is the critical factor for improving the activity of the hydrogen- and oxygen-evolution reactions in AEM electrolysers. Based on this observation, we prepared and tested several quaternized polystyrene electrode binders in an AEM electrolyser. Using the binder with the highest ionic concentration and a NiFe oxygen evolution catalyst, we demonstrated performance of 2.7 A cm−2 at 1.8 V without a corrosive circulating alkaline solution. The limited durability of the AEM electrolyser remains a challenge to be addressed in the future. Anion exchange membrane water electrolysers have potential cost advantages over proton exchange membrane electrolysers, but their performance has lagged behind. Here the authors investigate the cause of the poor performance of anion exchange membrane electrolysers and design ionomers that can overcome some of the challenges.

286 citations

Proceedings Article
31 Jul 2006
TL;DR: A unique fingerprinting technique is developed that accurately and efficiently identifies the wireless driver without modification to or cooperation from a wireless device.
Abstract: Motivated by the proliferation of wireless-enabled devices and the suspect nature of device driver code, we develop a passive fingerprinting technique that identifies the wireless device driver running on an IEEE 802.11 compliant device. This technique is valuable to an attacker wishing to conduct reconnaissance against a potential target so that he may launch a driver-specific exploit. In particular, we develop a unique fingerprinting technique that accurately and efficiently identifies the wireless driver without modification to or cooperation from a wireless device. We perform an evaluation of this fingerprinting technique that shows it both quickly and accurately fingerprints wireless device drivers in real world wireless network conditions. Finally, we discuss ways to prevent fingerprinting that will aid in improving the security of wireless communication for devices that employ 802.11 networking.

285 citations

Journal ArticleDOI
TL;DR: It is shown that the formation of defect-free twins, a process related to the material stacking fault energy, nanometer size scale, and surface stresses is the mechanism that controls the ability of fcc nanowires of different materials to show a reversible transition between two crystal orientations during loading and thus shape memory and pseudoelasticity.
Abstract: Structural reorientations in metallic fcc nanowires are controlled by a combination of size, thermal energy, and the type of defects formed during inelastic deformation. By utilizing atomistic simulations, we show that certain fcc nanowires can exhibit both shape memory and pseudoelastic behavior. We also show that the formation of defect-free twins, a process related to the material stacking fault energy, nanometer size scale, and surface stresses is the mechanism that controls the ability of fcc nanowires of different materials to show a reversible transition between two crystal orientations during loading and thus shape memory and pseudoelasticity.

285 citations

Journal ArticleDOI
TL;DR: NMR data have proven very powerful in providing direct evidence about the local structural environments present in the these materials and in many cases have allowed interpretation of the physical and chemical behavior of these glasses in terms of polyhedral structures.

285 citations

Journal ArticleDOI
TL;DR: In this paper, the warmeubertragung durch zwei temperaturen geregelt werden; die eine regelt die Strahlung, die andere die Leitung.
Abstract: In einem nicht-einfachen Material kann die Warmeubertragung durch zwei Temperaturen geregelt werden; die eine regelt die Strahlung, die andere die Leitung. In dieser Arbeit zeigen wir unter Benutzung fruherer Ergebnisse, dass bei stationaren Bedingungen die Differenz der beiden Temperaturen proportional zur Strahlungsdichte ist.

285 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514