scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Combustion. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of phosphate glasses, containing from 14 to 43 mol% Fe2O3 and up to 13 mol% Na2O, have been measured, and the outstanding chemical durability of these glasses was attributed to the replacement of PO ǫP bonds by more chemically resistant PO Ã Ã P bonds.
Abstract: Selected properties of phosphate glasses, containing from 14 to 43 mol% Fe2O3 and up to 13 mol% Na2O, have been measured. With increasing Fe2O3 and Na2O content, the density and dilatometric softening temperature increased, whereas, the thermal expansion coefficient and dissolution rate in water or saline at 90°C decreased. Glasses containing more than 25 mol% Fe2O3 had an exceedingly good chemical durability. Their dissolution rate at 90°C in distilled water or in saline solution was up to 100 times lower than that of window glass. Mossbauer and X-ray photoelectron spectroscopy indicate that iron(II) and iron(III) were both present in the glasses and the chemical durability improved with increasing iron(III) concentration. The outstanding chemical durability of these glasses was attributed to the replacement of POP bonds by more chemically resistant POFe(II) and POFe(III) bonds.

274 citations

Journal ArticleDOI
TL;DR: This work demonstrated an ion acceleration mechanism based on the concept of relativistic transparency and produced an intense beam of high energy deuterons directed into a Be converter to produce a forward peaked neutron flux with a record yield.
Abstract: Neutrons are unique particles to probe samples in many fields of research ranging from biology to material sciences to engineering and security applications. Access to bright, pulsed sources is currently limited to large accelerator facilities and there has been a growing need for compact sources over the recent years. Short pulse laser driven neutron sources could be a compact and relatively cheap way to produce neutrons with energies in excess of 10 MeV. For more than a decade experiments have tried to obtain neutron numbers sufficient for applications. Our recent experiments demonstrated an ion acceleration mechanism based on the concept of relativistic transparency. Using this new mechanism, we produced an intense beam of high energy (up to 170 MeV) deuterons directed into a Be converter to produce a forward peaked neutron flux with a record yield, on the order of ${10}^{10}\text{ }\text{ }\mathrm{n}/\mathrm{sr}$. We present results comparing the two acceleration mechanisms and the first short pulse laser generated neutron radiograph.

273 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a single-pulse reaction-front imaging diagnostic is proposed for single-shot measurements of turbulent-reacting flows, which is based on the pixel-by-pixel product of OH and CH2O planar laser-induced fluorescence (PLIF) images.
Abstract: Local heat release rate represents one of the most interesting experimental observables in the study of unsteady reacting flows. The direct measure of burning or heat release rate as a field variable is not possible. Numerous experimental investigations have relied on inferring this type of information as well as flame-front topology from indirect measures that are presumed to be correlated. A recent study has brought into question many of the commonly used flame-front marker and burning-rate diagnostics. This same study found that the concentration of formyl radical offers the best possibility for measuring flame burning rate. However, primarily due to low concentrations, the fluorescence signal level from formyl is too weak to employ this diagnostic for single-pulse measurements of turbulent-reacting flows. In this paper, we describe and demonstrate a new fluorescence-based reaction-front imaging diagnostic suitable for single-shot applications. The measurement is based on taking the pixel-by-pixel product of OH and CH2O planar laser-induced fluorescence (PLIF) images to yield an image closely related to a reaction rate. The spectroscopic and collisional processes affecting the measured signals are discussed, and the foundation of the diagnostic, as based on laminar and unsteady flame calculations, is presented. We report the results of applying this diagnostic to the study of a laminar premixed flame subject to an interaction with an isolated line-vortex pair.

273 citations

Journal ArticleDOI
TL;DR: The diffusion of Si dimers on the Si(001) surface at temperatures between room temperature and 128{degree}C is measured using a novel atom-tracking technique that can resolve every diffusion event.
Abstract: The diffusion of Si dimers on the Si(001) surface at temperatures between room temperature and 128 \ifmmode^\circ\else\textdegree\fi{}C is measured using a novel atom-tracking technique that can resolve every diffusion event. The atom tracker employs lateral-positioning feedback to lock the scanning tunneling microscope (STM) probe tip into position above selected atoms with subangstrom precision. Once locked the STM tracks the position of the atoms as they migrate over the crystal surface. By tracking individual atoms directly, the ability of the instrument to measure dynamic events is increased by a factor of $\ensuremath{\sim}1000$ over conventional STM imaging techniques.

273 citations

Journal ArticleDOI
TL;DR: In this article, the effect of hydrogen blending on lean premixed methane-air flames is studied with the direct numerical simulation (DNS) approach coupled with a reduced chemical mechanism, and two flames are compared with respect to stability and pollutant formation characteristics: a pure methane flame close to the lean limit, and one enriched with hydrogen.

273 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514