scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Thin film. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.
Topics: Laser, Thin film, Hydrogen, Combustion, Silicon


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the NNH−O, NNH+O, NH+O2, and NH2−O2 potential energy surfaces were investigated for thermal de NOx and NNH mechanism for NO formation.

265 citations

Journal ArticleDOI
01 Jan 1996
TL;DR: In this article, the quantum chemical BAC-MP4 and BACMP2 methods have been used to investigate the reaction mechanisms leading to polycyclic aromatic hydrocarbon (PAH) ring formation, in particular the elementary reaction steps in the conversion of two cyclopentadienyl radicals to naphthalene.
Abstract: The quantum chemical BAC-MP4 and BAC-MP2 methods have been used to investigate the reaction mechanisms leading to polycyclic aromatic hydrocarbon (PAH) ring formation. In particular we have determined the elementary reaction steps in the conversion of two cyclopentadienyl radicals to naphthalene. This reaction mechanism is shown to be an extension of the mechanism occurring in the H atomassisted conversion of fulvene to benzene. The net reaction involves the formation of dihydrofulvalene, which eliminates a hydrogen atom and then rearranges to form naphthalene through a series of ring closures and openings. The importance of forming the -CR(·)-CHR-CR′=CR″- moiety, which can undergo rearrangement to form three-carbon atom ring structures, is illustrated with the C4H7 system. The ability of hydrogen atoms to migrate around the cyclopentadienyl moiety is illustrated both for methyl-cyclopentadiene, C5H5CH3, and dihydrofulvalene, C5H5C5H5, as well as for their radical species, C6H7 and C5H5C5H4. The mobility of hydrogen in the cyclopentadienyl moiety plays an important role both in providing resonance-stabilized radical products and in creating the -CR(·) CHR-CR′=CR″- moiety for ring formation. The results illustrate the radical pathway for converting five-membered rings to aromatic six-membered rings. Furthermore, the results indicate the important catalytic role of H atoms in the aromatic ring formation process.

264 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explain the Shubnikov-de Haas effect in terms of Landau-level transitions between spatially shifted oscillators, where a momentum transfer is associated with the transition where k is the electron Fermi wave number.
Abstract: Millimeterwave photoconductivity in a high-mobility $\mathrm{GaAs}\ensuremath{-}{\mathrm{Al}}_{x}{\mathrm{Ga}}_{1\ensuremath{-}x}\mathrm{As}$ two-dimensional electron gas exhibits giant amplitude oscillations in a weak magnetic field. These oscillations resemble the Shubnikov--de Haas effect but their period is determined by $\ensuremath{\omega}/{\ensuremath{\omega}}_{C},$ where $\ensuremath{\omega}$ and ${\ensuremath{\omega}}_{C}$ are the millimeterwave and cyclotron frequencies, respectively. The major observations can be explained in terms of Landau-level transitions between spatially shifted oscillators. A ${2k}_{F}$ momentum transfer is accompanying the transition where ${k}_{F}$ is the electron Fermi wave number.

264 citations

Journal ArticleDOI
TL;DR: The major features available at PATRIC are summarized, dividing the resources into two major categories: organisms, genomes, and comparative genomics and (ii) recurrent integration of community-derived associated data.
Abstract: Funded by the National Institute of Allergy and Infectious Diseases, the Pathosystems Resource Integration Center (PATRIC) is a genomics-centric relational database and bioinformatics resource designed to assist scientists in infectious-disease research. Specifically, PATRIC provides scientists with (i) a comprehensive bacterial genomics database, (ii) a plethora of associated data relevant to genomic analysis, and (iii) an extensive suite of computational tools and platforms for bioinformatics analysis. While the primary aim of PATRIC is to advance the knowledge underlying the biology of human pathogens, all publicly available genome-scale data for bacteria are compiled and continually updated, thereby enabling comparative analyses to reveal the basis for differences between infectious free-living and commensal species. Herein we summarize the major features available at PATRIC, dividing the resources into two major categories: (i) organisms, genomes, and comparative genomics and (ii) recurrent integration of community-derived associated data. Additionally, we present two experimental designs typical of bacterial genomics research and report on the execution of both projects using only PATRIC data and tools. These applications encompass a broad range of the data and analysis tools available, illustrating practical uses of PATRIC for the biologist. Finally, a summary of PATRIC's outreach activities, collaborative endeavors, and future research directions is provided.

264 citations

Proceedings ArticleDOI
25 Apr 2006
TL;DR: This work presents a parallel software package for hypergraph (and sparse matrix) partitioning developed at Sandia National Labs, and presents empirical results that show the parallel implementation achieves good speedup on several large problems.
Abstract: Graph partitioning is often used for load balancing in parallel computing, but it is known that hypergraph partitioning has several advantages. First, hypergraphs more accurately model communication volume, and second, they are more expressive and can better represent nonsymmetric problems. Hypergraph partitioning is particularly suited to parallel sparse matrix-vector multiplication, a common kernel in scientific computing. We present a parallel software package for hypergraph (and sparse matrix) partitioning developed at Sandia National Labs. The algorithm is a variation on multilevel partitioning. Our parallel implementation is novel in that it uses a two-dimensional data distribution among processors. We present empirical results that show our parallel implementation achieves good speedup on several large problems (up to 33 million nonzeros) with up to 64 processors on a Linux cluster.

264 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514