scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Combustion. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a 3D direct numerical simulation (DNS) of a turbulent lifted ethylene jet flame in heated co-flowing air is used to identify the detailed structure and stabilization mechanism.

249 citations

Journal ArticleDOI
TL;DR: Three-dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high quality meshes.
Abstract: Three-dimensional unstructured tetrahedral and hexahedral finite element mesh optimization is studied from a theoretical perspective and by computer experiments to determine what objective functions are most effective in attaining valid, high quality meshes. The approach uses matrices and matrix norms to extend the work in Part I to build suitable 3D objective functions. Because certain matrix norm identities which hold for 2 x 2 matrices do not hold for 3 x 3 matrices. significant differences arise between surface and volume mesh optimization objective functions. It is shown, for example, that the equivalence in two-dimensions of the Smoothness and Condition Number of the Jacobian matrix objective functions does not extend to three dimensions and further. that the equivalence of the Oddy and Condition Number of the Metric Tensor objective functions in two-dimensions also fails to extend to three-dimensions. Matrix norm identities are used to systematically construct dimensionally homogeneous groups of objective functions. The concept of an ideal minimizing matrix is introduced for both hexahedral and tetrahedral elements. Non-dimensional objective functions having barriers are emphasized as the most logical choice for mesh optimization. The performance of a number of objective functions in improving mesh quality was assessed on a suite of realistic test problems, focusing particularly on all-hexahedral ''whisker-weaved'' meshes. Performance is investigated on both structured and unstructured meshes and on both hexahedral and tetrahedral meshes. Although several objective functions are competitive, the condition number objective function is particularly attractive. The objective functions are closely related to mesh quality measures. To illustrate, it is shown that the condition number metric can be viewed as a new tetrahedral element quality measure.

249 citations

01 Jun 2013
TL;DR: Shin et al. as discussed by the authors used a hybrid photonic-phononic waveguide structure and showed stimulated Brillouin scattering nonlinearities and gain, which offers new on-chip signal processing abilities.
Abstract: Exploiting photon–phonon coupling in nanoscale silicon waveguides could enable a host of powerful features in photonic devices. Using a hybrid photonic–phononic waveguide structure, Shin et al. show stimulated Brillouin scattering nonlinearities and gain, which offers new on-chip signal-processing abilities.

249 citations

Journal ArticleDOI
TL;DR: In this article, the physical hazards associated with conventional LiPF6 and carbonate-based electrolytes are well documented and include high volume gas decomposition products at elevated temperature, large combustion enthalpy and flammability of solvent vapor.
Abstract: Electrolytes have been shown to be a major source of poor safety response of Li ion cells. The physical hazards associated with conventional LiPF6 and carbonate-based electrolytes are well documented and include high volume gas decomposition products at elevated temperature, large combustion enthalpy and flammability of solvent vapor. However, the physical and health hazards of the decompositions products can be often overlooked. Electrolyte additives proposed to reduce gas generation and mitigate flammability have not gained much traction, in general, because of the trade-off in cell performance. To maintain cell performance, quantities of additives are generally introduced in fractions <10% which significantly decreases the efficacy of the additive. New additives need to be developed in order to strike the balance between improving abuse tolerance and maintaining performance.

249 citations

Journal ArticleDOI
01 May 2006
TL;DR: The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance coputing.
Abstract: The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance coputing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed coputing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal ovehead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including cobustion research, global climate simulation, and computtional chemistry.

249 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514