scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Combustion. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.


Papers
More filters
Journal ArticleDOI
07 Sep 2018-Science
TL;DR: Experimental and theoretical evidence is presented for rapid molecular clustering–reaction pathways involving radicals with extended conjugation involving PAHs and other hydrocarbon species to form covalently bound complexes that promote further growth and clustering by regenerating resonance-stabilized radicals through low-barrier hydrogen-abstraction and hydrogen-ejection reactions.
Abstract: Mystery surrounds the transition from gas-phase hydrocarbon precursors to terrestrial soot and interstellar dust, which are carbonaceous particles formed under similar conditions. Although polycyclic aromatic hydrocarbons (PAHs) are known precursors to high-temperature carbonaceous-particle formation, the molecular pathways that initiate particle formation are unknown. We present experimental and theoretical evidence for rapid molecular clustering–reaction pathways involving radicals with extended conjugation. These radicals react with other hydrocarbon species to form covalently bound complexes that promote further growth and clustering by regenerating resonance-stabilized radicals through low-barrier hydrogen-abstraction and hydrogen-ejection reactions. Such radical–chain reaction pathways may lead to covalently bound clusters of PAHs and other hydrocarbons that would otherwise be too small to condense at high temperatures, thus providing the key mechanistic steps for rapid particle formation and surface growth by hydrocarbon chemisorption.

423 citations

Journal ArticleDOI
TL;DR: PC (the negative logarithm of the counterion concentration) is proposed as a useful normalization for the ζ potential on polymer substrates in contact with indifferent univalent counterions to allow improved ability to predict ε potential performance on microfluidic substrates and compare results observed with different parameters.
Abstract: Zeta potential data are reviewed for a variety of polymeric microfluidic substrate materials. Many of these materials currently used for microchip fabrication have only recently been employed for generation of electroosmotic flow. Despite their recent history, polymeric microfluidic substrates are currently used extensively for microchip separations and other techniques, and understanding of the surface zeta potential is crucial for experimental design. This paper proposes the use of pC (the negative logarithm of the counterion concentration) as a useful normalization for the zeta potential on polymer substrates in contact with indifferent univalent counterions. Normalizing zeta by pC facilitates comparison of results from many investigators. The sparseness of available data for polymeric substrates prevents complete and rigorous justification for this normalization; however, it is consistent with double layer and adsorption theory. For buffers with indifferent univalent cations, normalization with the logarithm of the counterion concentration in general collapses data onto a single zeta/pC vs. pH curve, and (with the exception of PMMA) the repeatability of the data is quite encouraging. Normalization techniques should allow improved ability to predict zeta potential performance on microfluidic substrates and compare results observed with different parameters.

422 citations

Journal ArticleDOI
TL;DR: In this paper, the use of second-harmonic generation (SHG) as the nonlinearity in the technique of frequency-resolved optical gating (FROG) for measuring the full intensity and phase evolution of an arbitrary ultrashort pulse.
Abstract: We discuss the use of second-harmonic generation (SHG) as the nonlinearity in the technique of frequency-resolved optical gating (FROG) for measuring the full intensity and phase evolution of an arbitrary ultrashort pulse. FROG that uses a third-order nonlinearity in the polarization-gate geometry has proved extremely successful, and the algorithm required for extraction of the intensity and the phase from the experimental data is quite robust. However, for pulse intensities less than ~1 MW, third-order nonlinearities generate insufficient signal strength, and therefore SHG FROG appears necessary. We discuss the theoretical, algorithmic, and experimental considerations of SHG FROG in detail. SHG FROG has an ambiguity in the direction of time, and its traces are somewhat unintuitive. Also, previously published algorithms are generally ineffective at extracting the intensity and the phase of an arbitrary laser pulse from the SHG FROG trace. We present an improved pulse-retrieval algorithm, based on the method of generalized projections, that is far superior to the previously published algorithms, although it is still not so robust as the polarization-gate algorithm. We discuss experimental sources of error such as pump depletion and group-velocity mismatch. We also present several experimental examples of pulses measured with SHG FROG and show that the derived intensities and phases are in agreement with more conventional diagnostic techniques, and we demonstrate the high-dynamic-range capability of SHG FROG. We conclude that, despite the above drawbacks, SHG FROG should be useful in measuring low-energy pulses.

422 citations

Journal ArticleDOI
10 May 2019-Science
TL;DR: An ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM) is introduced, enabling linear and symmetric weight updates in parallel over an entire crossbar array at megahertz rates over 109 write-read cycles.
Abstract: Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and 1 billion write-read operations and support >1-megahertz write-read frequencies.

422 citations

Journal ArticleDOI
TL;DR: A new beam-propagation method is presented whereby the exact scalar Helmholtz propagation operator is replaced by any one of a sequence of higher-order Pade approximant operators, resulting in a matrix equation of bandwidth 2n + 1 that is solvable by using Standard implicit solution techniques.
Abstract: A new beam-propagation method is presented whereby the exact scalar Helmholtz propagation operator is replaced by any one of a sequence of higher-order (n, n) Pade approximant operators. The resulting differential equation may then be discretized to obtain (in two dimensions) a matrix equation of bandwidth 2n + 1 that is solvable by using Standard implicit solution techniques. The final algorithm allows (for n = 2) accurate propagation at angles of greater than 55 deg from the propagation axis as well as propagation through materials with widely differing indices of refraction.

421 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514