scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Combustion. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.


Papers
More filters
Journal ArticleDOI
01 May 2014
TL;DR: This report presents a report produced by a workshop on ‘Addressing failures in exascale computing’ held in Park City, Utah, 4–11 August 2012, which summarizes and builds on discussions on resilience.
Abstract: We present here a report produced by a workshop on 'Addressing failures in exascale computing' held in Park City, Utah, 4-11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an exascale system, and build on those results, examining potential solutions from both a hardware and software perspective and focusing on a combined approach. The workshop brought together participants with expertise in applications, system software, and hardware; they came from industry, government, and academia, and their interests ranged from theory to implementation. The combination allowed broad and comprehensive discussions and led to this document, which summarizes and builds on those discussions.

406 citations

Journal ArticleDOI
TL;DR: In this paper, a nanoscale continuum theory is established to directly incorporate interatomic potentials into a continuum analysis without any parameter fitting, which is applied to study the linear elastic modulus of a single-wall carbon nanotube.

406 citations

Proceedings ArticleDOI
15 Dec 2008
TL;DR: Memory-Efficient Tucker (MET) is proposed, which achieves over 1000X space reduction without sacrificing speed; it also allows us to work with much larger tensors that were too big to handle before.
Abstract: Modern applications such as Internet traffic, telecommunication records, and large-scale social networks generate massive amounts of data with multiple aspects and high dimensionalities. Tensors (i.e., multi-way arrays) provide a natural representation for such data. Consequently, tensor decompositions such as Tucker become important tools for summarization and analysis. One major challenge is how to deal with high-dimensional, sparse data. In other words, how do we compute decompositions of tensors where most of the entries of the tensor are zero. Specialized techniques are needed for computing the Tucker decompositions for sparse tensors because standard algorithms do not account for the sparsity of the data. As a result, a surprising phenomenon is observed by practitioners: Despite the fact that there is enough memory to store both the input tensors and the factorized output tensors, memory overflows occur during the tensor factorization process. To address this intermediate blowup problem, we propose Memory-Efficient Tucker (MET). Based on the available memory, MET adaptively selects the right execution strategy during the decomposition. We provide quantitative and qualitative evaluation of MET on real tensors. It achieves over 1000X space reduction without sacrificing speed; it also allows us to work with much larger tensors that were too big to handle before. Finally, we demonstrate a data mining case-study using MET.

406 citations

Journal ArticleDOI
TL;DR: In this article, the performance of hydrogen production via steam methane reforming (SMR) is evaluated using exergy analysis, with emphasis on exergy flows, destruction, waste, and efficiencies.

404 citations

Journal ArticleDOI
TL;DR: Directed light fabrication (DLF) and laser engineered net shaping (LENS TM ) processes have been proven feasible for fabricating components from nearly any metal system to near-net shape accuracy with mechanical properties approaching and in some cases exceeding the properties found in conventional processed wrought structures.

404 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514