scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Thin film. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.
Topics: Laser, Thin film, Hydrogen, Combustion, Silicon


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a numerical method for solving dynamic problems within the peridynamic theory is described, and the properties of the method for modeling brittle dynamic crack growth are discussed, as well as its accuracy and numerical stability.

1,644 citations

Journal ArticleDOI
TL;DR: In this article, a generalization of the original peridynamic framework for solid mechanics is proposed, which allows the response of a material at a point to depend collectively on the deformation of all bonds connected to the point.
Abstract: A generalization of the original peridynamic framework for solid mechanics is proposed. This generalization permits the response of a material at a point to depend collectively on the deformation of all bonds connected to the point. This extends the types of material response that can be reproduced by peridynamic theory to include an explicit dependence on such collectively determined quantities as volume change or shear angle. To accomplish this generalization, a mathematical object called a deformation state is defined, a function that maps any bond onto its image under the deformation. A similar object called a force state is defined, which contains the forces within bonds of all lengths and orientation. The relation between the deformation state and force state is the constitutive model for the material. In addition to providing a more general capability for reproducing material response, the new framework provides a means to incorporate a constitutive model from the conventional theory of solid mechanics directly into a peridynamic model. It also allows the condition of plastic incompressibility to be enforced in a peridynamic material model for permanent deformation analogous to conventional plasticity theory.

1,591 citations

Journal ArticleDOI
TL;DR: In this article, a method for inducing a desired rank correlation matrix on a multivariate input random variable for use in a simulation study is introduced, which preserves the exact form of the marginal distributions on the input variables, and may be used with any type of sampling scheme for which correlation of input variables is a meaningful concept.
Abstract: A method for inducing a desired rank correlation matrix on a multivariate input random variable for use in a simulation study is introduced in this paper. This method is simple to use, is distribution free, preserves the exact form of the marginal distributions on the input variables, and may be used with any type of sampling scheme for which correlation of input variables is a meaningful concept. A Monte Carlo study provides an estimate of the bias and variability associated with the method. Input variables used in a model for study of geologic disposal of radioactive waste provide an example of the usefulness of this procedure. A textbook example shows how the output may be affected by the method presented in this paper.

1,571 citations

Journal ArticleDOI
TL;DR: The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) as mentioned in this paper is a simulator for particle-based modeling of materials at length scales ranging from atomic to mesoscale to continuum.

1,517 citations

Journal ArticleDOI
TL;DR: This work simulates an apparatus that learns to excite specified rotational states in a diatomic molecule and uses a learning procedure to direct the production of pulses based on fitness'' information provided by a laboratory measurement device.
Abstract: We simulate a method to teach a laser pulse sequences to excite specified molecular states. We use a learning procedure to direct the production of pulses based on ``fitness'' information provided by a laboratory measurement device. Over a series of pulses the algorithm learns an optimal sequence. The experimental apparatus, which consists of a laser, a sample of molecules and a measurement device, acts as an analog computer that solves Schr\"odinger's equation n/Iexactly, in real time. We simulate an apparatus that learns to excite specified rotational states in a diatomic molecule.

1,426 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514