scispace - formally typeset
Search or ask a question
Institution

Sandia National Laboratories

FacilityLivermore, California, United States
About: Sandia National Laboratories is a facility organization based out in Livermore, California, United States. It is known for research contribution in the topics: Laser & Combustion. The organization has 21501 authors who have published 46724 publications receiving 1484388 citations. The organization is also known as: SNL & Sandia National Labs.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new analytical model for toughening of epoxy-rubber composites is proposed, which predicts the failure strain of the particles in terms of their size and the amount of elastic energy stored in the rubber during stretching.
Abstract: Epoxy resins are toughened significantly by a dispersion of rubber precipitates. Microscopic examinations of propagating cracks in epoxy-rubber composites reveal that the brittle epoxy matrix cracks, leaving ligaments of rubber attached to the two crack surfaces. The rubber particles are stretched as the crack opens and fail by tearing at large, critical extensions. This fracture mechanism is the basis of a new analytical model for toughening. An increase in toughness (ΔGIC) of the composite is identified with the amount of elastic energy stored in the rubber during stretching which is dissipated irreversibly (e.g. as heat) when the particles fail. The model predicts the failure strain of the particles in terms of their size. It also relates the toughness increase to the volume fraction and tearing energy of the rubber particles. Direct measurements of the tearing strains of rubber particles, and toughness data obtained from epoxy-rubber composites, are in good agreement with the model. The particle-stretching model provides a quantitative explanation, in contribution to existing qualitative theories, for the toughening of epoxy-rubber composites.

353 citations

Journal ArticleDOI
TL;DR: PC-PC-1D as discussed by the authors is a quasi-one-dimensional finite-element program for modeling semiconductor devices on personal computers, which offers solar cell researchers a convenient user interface with the ability to address complex issues associated with heavy doping, high-level injection, nonplanar structures, and transients.
Abstract: PC-1D is a quasi-one-dimensional finite-element program for modeling semiconductor devices on personal computers. The program offers solar cell researchers a convenient user interface with the ability to address complex issues associated with heavy doping, high-level injection, nonplanar structures, and transients. The physical and numerical models used in PC-1D Version 2 that make it possible to approximate the multidimensional effects found in textured crystalline silicon solar cells, including the effects of increased front-surface recombination, oblique photon path angles, and light trapping, are presented. As an example of how the model can be applied, PC-1D is used to investigate the interpretation of spectral quantum efficiency data as a tool for diagnosing the internal performance of textured silicon solar cells. >

353 citations

Journal ArticleDOI
TL;DR: In this article, a new stabilized finite element method for the Stokes problem is presented by modifying the mixed variational equation by using local L 2 polynomial pressure projections, which leads to a stable variational formulation.
Abstract: A new stabilized finite element method for the Stokes problem is presented. The method is obtained by modification of the mixed variational equation by using local L2 polynomial pressure projections. Our stabilization approach is motivated by the inherent inconsistency of equal-order approximations for the Stokes equations, which leads to an unstable mixed finite element method. Application of pressure projections in conjunction with minimization of the pressure–velocity mismatch eliminates this inconsistency and leads to a stable variational formulation. Unlike other stabilization methods, the present approach does not require specification of a stabilization parameter or calculation of higher-order derivatives, and always leads to a symmetric linear system. The new method can be implemented at the element level and for affine families of finite elements on simplicial grids it reduces to a simple modification of the weak continuity equation. Numerical results are presented for a variety of equal-order continuous velocity and pressure elements in two and three dimensions. Copyright © 2004 John Wiley & Sons, Ltd.

352 citations

Journal ArticleDOI
TL;DR: The Lattice-Boltzmann method was used to simulate the flow conditions within perfused cell-seeded cylindrical scaffolds and an average surface shear stress of 5x10(-5)Pa was found to correspond to increased cell proliferation, while higher shear stresses were associated with upregulation of bone marker genes.

351 citations


Authors

Showing all 21652 results

NameH-indexPapersCitations
Lily Yeh Jan16246773655
Jongmin Lee1502257134772
Jun Liu13861677099
Gerbrand Ceder13768276398
Kevin M. Smith114171178470
Henry F. Schaefer111161168695
Thomas Bein10967742800
David Chandler10742452396
Stephen J. Pearton104191358669
Harold G. Craighead10156940357
Edward Ott10166944649
S. Das Sarma10095158803
Richard M. Crooks9741931105
David W. Murray9769943372
Alán Aspuru-Guzik9762844939
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

94% related

Argonne National Laboratory
64.3K papers, 2.4M citations

94% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022245
20211,510
20201,580
20191,535
20181,514