scispace - formally typeset
Search or ask a question
Institution

Santa Fe Institute

NonprofitSanta Fe, New Mexico, United States
About: Santa Fe Institute is a nonprofit organization based out in Santa Fe, New Mexico, United States. It is known for research contribution in the topics: Population & Complex network. The organization has 558 authors who have published 4558 publications receiving 396015 citations. The organization is also known as: SFI.


Papers
More filters
Journal ArticleDOI
TL;DR: This work derives coupled replicator equations that describe the dynamics of collective learning in multiagent systems and shows that, although agents model their environment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through environment-mediated interactions.
Abstract: Starting with a group of reinforcement-learning agents we derive coupled replicator equations that describe the dynamics of collective learning in multiagent systems. We show that, although agents model their environment in a self-interested way without sharing knowledge, a game dynamics emerges naturally through environment-mediated interactions. An application to rock-scissors-paper game interactions shows that the collective learning dynamics exhibits a diversity of competitive and cooperative behaviors. These include quasiperiodicity, stable limit cycles, intermittency, and deterministic chaos-behaviors that should be expected in heterogeneous multiagent systems described by the general replicator equations we derive.

160 citations

Journal ArticleDOI
01 Feb 2001-RNA
TL;DR: It is argued that both the general properties of the sequence structure map of RNA secondary structures and the ease with which the design tool finds bistable RNAs strongly indicates that RNA switches are easily accessible in evolution.
Abstract: We show that the problem of designing RNA sequences that can fold into multiple stable secondary structures can be transformed into a combinatorial optimization problem that can be solved by means of simple heuristics. Hence it is feasible to design RNA switches with prescribed structural alternatives. We discuss the theoretical background and present an efficient tool that allows the design of various types of switches. We argue that both the general properties of the sequence structure map of RNA secondary structures and the ease with which our design tool finds bistable RNAs strongly indicates that RNA switches are easily accessible in evolution. Thus conformational switches are yet another function for which RNA can be employed.

160 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical study of the computational tests used in the benchmarking explains why that may be the case, and a theoretical analysis of the D-Wave-2 type shows that they do not perform faster than standard desktop computers.
Abstract: Recent benchmarking of the computational speedup of quantum ``annealing'' machines of the D-Wave-2 type shows that they do not perform faster than a standard desktop computer. A timely theoretical study of the computational tests used in the benchmarking explains why that may be the case.

159 citations

Posted Content
Mark Newman1
TL;DR: It is believed that almost any pair of people in the world can be connected to one another by a short chain of intermediate acquaintances, of typical length about six This phenomenon, colloquially referred to as the ''six degrees of separation'' has been the subject of considerable recent interest within the physics community as discussed by the authors.
Abstract: It is believed that almost any pair of people in the world can be connected to one another by a short chain of intermediate acquaintances, of typical length about six This phenomenon, colloquially referred to as the ``six degrees of separation,'' has been the subject of considerable recent interest within the physics community This paper provides a short review of the topic

158 citations

Journal ArticleDOI
TL;DR: Specific HIV-1 residues (enriched in Vpr, Gag, and Rev) and HLA alleles (particularly B and C) confer susceptibility to the CTL response and are likely to be important in the development of vaccines targeted to decrease the viral load.
Abstract: Human immunodeficiency virus type 1 (HIV-1) mutations that confer escape from cytotoxic T-lymphocyte (CTL) recognition can sometimes result in lower viral fitness. These mutations can then revert upon transmission to a new host in the absence of CTL-mediated immune selection pressure restricted by the HLA alleles of the prior host. To identify these potentially critical recognition points on the virus, we assessed HLA-driven viral evolution using three phylogenetic correction methods across full HIV-1 subtype C proteomes from a cohort of 261 South Africans and identified amino acids conferring either susceptibility or resistance to CTLs. A total of 558 CTL-susceptible and -resistant HLA-amino acid associations were identified and organized into 310 immunological sets (groups of individual associations related to a single HLA/epitope combination). Mutations away from seven susceptible residues, including four in Gag, were associated with lower plasma viral-RNA loads (q Gag > Rev > Pol > Nef > Vif > Tat > Env > Vpu (Fisher's exact test; P < or = 0.0009 for each comparison), suggesting the same ranking of fitness costs by genes associated with CTL escape. Significantly more HLA-B (chi(2); P = 3.59 x 10(-5)) and HLA-C (chi(2); P = 4.71 x 10(-6)) alleles were associated with amino acid changes than HLA-A, highlighting their importance in driving viral evolution. In conclusion, specific HIV-1 residues (enriched in Vpr, Gag, and Rev) and HLA alleles (particularly B and C) confer susceptibility to the CTL response and are likely to be important in the development of vaccines targeted to decrease the viral load.

158 citations


Authors

Showing all 606 results

NameH-indexPapersCitations
James Hone127637108193
James H. Brown12542372040
Alan S. Perelson11863266767
Mark Newman117348168598
Bette T. Korber11739249526
Marten Scheffer11135073789
Peter F. Stadler10390156813
Sanjay Jain10388146880
Henrik Jeldtoft Jensen102128648138
Dirk Helbing10164256810
Oliver G. Pybus10044745313
Andrew P. Dobson9832244211
Carel P. van Schaik9432926908
Seth Lloyd9249050159
Andrew W. Lo8537851440
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

Princeton University
146.7K papers, 9.1M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

University of California, Berkeley
265.6K papers, 16.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
202241
2021297
2020309
2019263
2018231