scispace - formally typeset
Search or ask a question
Institution

Santa Fe Institute

NonprofitSanta Fe, New Mexico, United States
About: Santa Fe Institute is a nonprofit organization based out in Santa Fe, New Mexico, United States. It is known for research contribution in the topics: Population & Complex network. The organization has 558 authors who have published 4558 publications receiving 396015 citations. The organization is also known as: SFI.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that the modularity function Q exhibits extreme degeneracies: it typically admits an exponential number of distinct high-scoring solutions and typically lacks a clear global maximum, implying that the output of any modularity maximization procedure should be interpreted cautiously in scientific contexts.
Abstract: Although widely used in practice, the behavior and accuracy of the popular module identification technique called modularity maximization is not well understood in practical contexts. Here, we present a broad characterization of its performance in such situations. First, we revisit and clarify the resolution limit phenomenon for modularity maximization. Second, we show that the modularity function Q exhibits extreme degeneracies: it typically admits an exponential number of distinct high-scoring solutions and typically lacks a clear global maximum. Third, we derive the limiting behavior of the maximum modularity Q(max) for one model of infinitely modular networks, showing that it depends strongly both on the size of the network and on the number of modules it contains. Finally, using three real-world metabolic networks as examples, we show that the degenerate solutions can fundamentally disagree on many, but not all, partition properties such as the composition of the largest modules and the distribution of module sizes. These results imply that the output of any modularity maximization procedure should be interpreted cautiously in scientific contexts. They also explain why many heuristics are often successful at finding high-scoring partitions in practice and why different heuristics can disagree on the modular structure of the same network. We conclude by discussing avenues for mitigating some of these behaviors, such as combining information from many degenerate solutions or using generative models.

982 citations

Journal ArticleDOI
07 Apr 2000-Science
TL;DR: A clear and consistent genetic classification of human immunodeficiency virus-type 1 (HIV-1) strains continues to be of great utility in epidemiological tracking of the AIDS pandemic and in vaccine design.
Abstract: A clear and consistent genetic classification of human immunodeficiency virus-type 1 (HIV-1) strains continues to be of great utility in epidemiological tracking of the AIDS pandemic and in vaccine design. It also provides a foundation for detecting any biological differences that may have evolved

977 citations

Journal ArticleDOI
TL;DR: In this paper, strong reciprocity is defined as a predisposition to cooperate with others and to punish those who violate the norms of cooperation, at personal cost, even when it is implausible to expect that these costs will be repaid.

963 citations

Journal ArticleDOI
29 Jun 2018-Science
TL;DR: In this paper, the authors examine barriers and opportunities associated with these difficult-to-decarbonize services and processes, including possible technological solutions and research and development priorities, and examine the use of existing technologies to meet future demands for these services without net addition of CO2 to the atmosphere.
Abstract: Some energy services and industrial processes-such as long-distance freight transport, air travel, highly reliable electricity, and steel and cement manufacturing-are particularly difficult to provide without adding carbon dioxide (CO2) to the atmosphere. Rapidly growing demand for these services, combined with long lead times for technology development and long lifetimes of energy infrastructure, make decarbonization of these services both essential and urgent. We examine barriers and opportunities associated with these difficult-to-decarbonize services and processes, including possible technological solutions and research and development priorities. A range of existing technologies could meet future demands for these services and processes without net addition of CO2 to the atmosphere, but their use may depend on a combination of cost reductions via research and innovation, as well as coordinated deployment and integration of operations across currently discrete energy industries.

951 citations

Journal ArticleDOI
07 Apr 2010-PLOS ONE
TL;DR: Analyzing the motion of approximately 1500 pedestrian groups under natural condition shows that social interactions among group members generate typical group walking patterns that influence crowd dynamics, demonstrating that crowd dynamics is not only determined by physical constraints induced by other pedestrians and the environment, but also significantly by communicative, social interaction among individuals.
Abstract: Human crowd motion is mainly driven by self-organized processes based on local interactions among pedestrians. While most studies of crowd behaviour consider only interactions among isolated individuals, it turns out that up to 70% of people in a crowd are actually moving in groups, such as friends, couples, or families walking together. These groups constitute medium-scale aggregated structures and their impact on crowd dynamics is still largely unknown. In this work, we analyze the motion of approximately 1500 pedestrian groups under natural condition, and show that social interactions among group members generate typical group walking patterns that influence crowd dynamics. At low density, group members tend to walk side by side, forming a line perpendicular to the walking direction. As the density increases, however, the linear walking formation is bent forward, turning it into a V-like pattern. These spatial patterns can be well described by a model based on social communication between group members. We show that the V-like walking pattern facilitates social interactions within the group, but reduces the flow because of its "non-aerodynamic" shape. Therefore, when crowd density increases, the group organization results from a trade-off between walking faster and facilitating social exchange. These insights demonstrate that crowd dynamics is not only determined by physical constraints induced by other pedestrians and the environment, but also significantly by communicative, social interactions among individuals.

950 citations


Authors

Showing all 606 results

NameH-indexPapersCitations
James Hone127637108193
James H. Brown12542372040
Alan S. Perelson11863266767
Mark Newman117348168598
Bette T. Korber11739249526
Marten Scheffer11135073789
Peter F. Stadler10390156813
Sanjay Jain10388146880
Henrik Jeldtoft Jensen102128648138
Dirk Helbing10164256810
Oliver G. Pybus10044745313
Andrew P. Dobson9832244211
Carel P. van Schaik9432926908
Seth Lloyd9249050159
Andrew W. Lo8537851440
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

Princeton University
146.7K papers, 9.1M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

University of California, Berkeley
265.6K papers, 16.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
202241
2021297
2020309
2019263
2018231