scispace - formally typeset
Search or ask a question
Institution

Santa Fe Institute

NonprofitSanta Fe, New Mexico, United States
About: Santa Fe Institute is a nonprofit organization based out in Santa Fe, New Mexico, United States. It is known for research contribution in the topics: Population & Complex network. The organization has 558 authors who have published 4558 publications receiving 396015 citations. The organization is also known as: SFI.


Papers
More filters
Journal ArticleDOI
TL;DR: Empirical and theoretical evidence is provided that artificial mummification appeared during a period of increased coastal freshwater availability and marine productivity, which caused an increase in human population size and accelerated the emergence of cultural innovations, as predicted by recent models of cultural and technological evolution.
Abstract: The emergence of complex cultural practices in simple hunter-gatherer groups poses interesting questions on what drives social complexity and what causes the emergence and disappearance of cultural innovations. Here we analyze the conditions that underlie the emergence of artificial mummification in the Chinchorro culture in the coastal Atacama Desert in northern Chile and southern Peru. We provide empirical and theoretical evidence that artificial mummification appeared during a period of increased coastal freshwater availability and marine productivity, which caused an increase in human population size and accelerated the emergence of cultural innovations, as predicted by recent models of cultural and technological evolution. Under a scenario of increasing population size and extreme aridity (with little or no decomposition of corpses) a simple demographic model shows that dead individuals may have become a significant part of the landscape, creating the conditions for the manipulation of the dead that led to the emergence of complex mortuary practices.

119 citations

Journal ArticleDOI
TL;DR: Host-macroparasite models are linked with the Metabolic Theory of Ecology, providing a mechanistic framework that allows integrating multiple nonlinear environmental effects to estimate parasite fitness under novel conditions, and thus, whether climate change leads to range contraction or may permit a range expansion.
Abstract: Climate change is expected to alter the dynamics of infectious diseases around the globe. Predictive models remain elusive due to the complexity of host-parasite systems and insufficient data describing how environmental conditions affect various system components. Here, we link host-macroparasite models with the Metabolic Theory of Ecology, providing a mechanistic framework that allows integrating multiple nonlinear environmental effects to estimate parasite fitness under novel conditions. The models allow determining the fundamental thermal niche of a parasite, and thus, whether climate change leads to range contraction or may permit a range expansion. Applying the models to seasonal environments, and using an arctic nematode with an endotherm host for illustration, we show that climate warming can split a continuous spring-to-fall transmission season into two separate transmission seasons with altered timings. Although the models are strategic and most suitable to evaluate broad-scale patterns of climate change impacts, close correspondence between model predictions and empirical data indicates model applicability also at the species level. As the application of Metabolic Theory considerably aids the a priori estimation of model parameters, even in data-sparse systems, we suggest that the presented approach could provide a framework for understanding and predicting climatic impacts for many host-parasite systems worldwide.

119 citations

Journal ArticleDOI
TL;DR: This work adapts Forman's discretization of Ricci curvature to the case of undirected networks, both weighted and unweighted, and investigates the measure in a variety of model and real-world networks to suggest that it can be employed to gain novel insights on the organization of complex networks.
Abstract: We adapt Forman's discretization of Ricci curvature to the case of undirected networks, both weighted and unweighted, and investigate the measure in a variety of model and real-world networks. We find that most nodes and edges in model and real networks have a negative curvature. Furthermore, the distribution of Forman curvature of nodes and edges is narrow in random and small-world networks, while the distribution is broad in scale-free and real-world networks. In most networks, Forman curvature is found to display significant negative correlation with degree and centrality measures. However, Forman curvature is uncorrelated with clustering coefficient in most networks. Importantly, we find that both model and real networks are vulnerable to targeted deletion of nodes with highly negative Forman curvature. Our results suggest that Forman curvature can be employed to gain novel insights on the organization of complex networks.

119 citations

Book ChapterDOI
TL;DR: In this paper, evolutionary psychology and cognitive neurosciences may be able to reconcile the EMH with behavioural anomalies, which is the most enduring critique from psychologists and behavioural economists who argue that EMH is based on counterfactual assumptions regarding human behaviour, that is, rationality.
Abstract: The efficient markets hypothesis (EMH) maintains that market prices fully reflect all available information. Developed independently by Paul A. Samuelson and Eugene F. Fama in the 1960s, this idea has been applied extensively to theoretical models and empirical studies of financial securities prices, generating considerable controversy as well as fundamental insights into the price-discovery process. The most enduring critique comes from psychologists and behavioural economists who argue that the EMH is based on counterfactual assumptions regarding human behaviour, that is, rationality. Recent advances in evolutionary psychology and the cognitive neurosciences may be able to reconcile the EMH with behavioural anomalies.

119 citations

Journal ArticleDOI
TL;DR: The analysis shows that crossing entropy barriers is faster by orders of magnitude than fitness barrier crossing, and when populations are trapped in a metastable phenotypic state, they are most likely to escape by crossing an entropy barrier, along a neutral path in genotype space.

119 citations


Authors

Showing all 606 results

NameH-indexPapersCitations
James Hone127637108193
James H. Brown12542372040
Alan S. Perelson11863266767
Mark Newman117348168598
Bette T. Korber11739249526
Marten Scheffer11135073789
Peter F. Stadler10390156813
Sanjay Jain10388146880
Henrik Jeldtoft Jensen102128648138
Dirk Helbing10164256810
Oliver G. Pybus10044745313
Andrew P. Dobson9832244211
Carel P. van Schaik9432926908
Seth Lloyd9249050159
Andrew W. Lo8537851440
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

Princeton University
146.7K papers, 9.1M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

University of California, Berkeley
265.6K papers, 16.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
202241
2021297
2020309
2019263
2018231