scispace - formally typeset
Search or ask a question
Institution

Santa Fe Institute

NonprofitSanta Fe, New Mexico, United States
About: Santa Fe Institute is a nonprofit organization based out in Santa Fe, New Mexico, United States. It is known for research contribution in the topics: Population & Context (language use). The organization has 558 authors who have published 4558 publications receiving 396015 citations. The organization is also known as: SFI.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors studied the cost of coal-fired electricity in the United States between 1882 and 2006 by decomposing it in terms of the price of coal, transportation cost, energy density, thermal efficiency, plant construction cost, interest rate, capacity factor, and operations and maintenance cost.

81 citations

Journal ArticleDOI
TL;DR: In this paper, an integrated approach is proposed to model community structure as a network of ecological interactions and show how it translates to biogeography questions, and apply this framework to host-parasite interactions across Europe and find that two aspects of the environment (temperature and precipitation) exert a strong imprint on species co-occurrence, but not on species interactions.
Abstract: Biogeography has traditionally focused on the spatial distribution and abundance of species. Both are driven by the way species interact with one another, but only recently community ecologists realized the need to document their spatial and temporal variation. Here, we call for an integrated approach, adopting the view that community structure is best represented as a network of ecological interactions, and show how it translates to biogeography questions. We propose that the ecological niche should encompass the effect of the environment on species distribution (the Grinnellian dimension of the niche) and on the ecological interactions among them (the Eltonian dimension). Starting from this concept, we develop a quantitative theory to explain turnover of interactions in space and time – i.e. a novel approach to interaction distribution modeling. We apply this framework to host–parasite interactions across Europe and find that two aspects of the environment (temperature and precipitation) exert a strong imprint on species co-occurrence, but not on species interactions. Even where species co-occur, interaction proves to be stochastic rather than deterministic, adding to variation in realized network structure. We also find that a large majority of host-parasite pairs are never found together, thus precluding any inferences regarding their probability to interact. This first attempt to explain variation of network structure at large spatial scales opens new perspectives at the interface of species distribution modeling and community ecology.

81 citations

Proceedings ArticleDOI
29 Aug 2009
TL;DR: A comparative analysis of the behavioral dynamics of rural and urban societies using four years of mobile phone data from all 1.4M subscribers within a small country proves that individuals change their patterns of communication to increase the similarity with their new social environment.
Abstract: We present a comparative analysis of the behavioral dynamics of rural and urban societies using four years of mobile phone data from all 1.4M subscribers within a small country. We use information from communication logs and top up denominations to characterize attributes such as socioeconomic status and region. We show that rural and urban communities differ dramatically not only in terms of personal network topologies, but also in terms of inferred behavioral characteristics such as travel. We confirm the hypothesis for behavioral adaptation, demonstrating that individuals change their patterns of communication to increase the similarity with their new social environment. To our knowledge, this is the first comprehensive comparison between regional groups of this size.

81 citations

Journal ArticleDOI
TL;DR: This approach takes correlations between neighboring nodes into account while preventing causal signals from backtracking to their immediate source, and thus avoids "echo chamber effects" where a pair of adjacent nodes each amplify the probability that the other is infectious.
Abstract: Epidemic processes are common out-of-equilibrium phenomena of broad interdisciplinary interest. Recently, dynamic message-passing (DMP) has been proposed as an efficient algorithm for simulating epidemic models on networks, and in particular for estimating the probability that a given node will become infectious at a particular time. To date, DMP has been applied exclusively to models with one-way state changes, as opposed to models like SIS and SIRS where nodes can return to previously inhabited states. Because many real-world epidemics can exhibit such recurrent dynamics, we propose a DMP algorithm for complex, recurrent epidemic models on networks. Our approach takes correlations between neighboring nodes into account while preventing causal signals from backtracking to their immediate source, and thus avoids "echo chamber effects" where a pair of adjacent nodes each amplify the probability that the other is infectious. We demonstrate that this approach well approximates results obtained from Monte Carlo simulation and that its accuracy is often superior to the pair approximation (which also takes second-order correlations into account). Moreover, our approach is more computationally efficient than the pair approximation, especially for complex epidemic models: the number of variables in our DMP approach grows as 2mk where m is the number of edges and k is the number of states, as opposed to mk^{2} for the pair approximation. We suspect that the resulting reduction in computational effort, as well as the conceptual simplicity of DMP, will make it a useful tool in epidemic modeling, especially for high-dimensional inference tasks.

81 citations

Journal ArticleDOI
TL;DR: It is shown that the problem of determining whether a sandpile state is recurrent is P-complete in d≥3, so that explicit simulation of the system is almost certainly necessary.
Abstract: Given an initial distribution of sand in an Abelian sandpile, what final state does it relax to after all possible avalanches have taken place? In d≥3, we show that this problem is P-complete, so that explicit simulation of the system is almost certainly necessary. We also show that the problem of determining whether a sandpile state is recurrent is P-complete in d≥3, and briefly discuss the problem of constructing the identity. In d=1, we give two algorithms for predicting the sandpile on a lattice of size n, both faster than explicit simulation: a serial one that runs in time \(\mathcal{O}\)(n log n), and a parallel one that runs in time \(\mathcal{O}\)(log3n), i.e., the class NC3. The latter is based on a more general problem we call additive ranked generability. This leaves the two-dimensional case as an interesting open problem.

81 citations


Authors

Showing all 606 results

NameH-indexPapersCitations
James Hone127637108193
James H. Brown12542372040
Alan S. Perelson11863266767
Mark Newman117348168598
Bette T. Korber11739249526
Marten Scheffer11135073789
Peter F. Stadler10390156813
Sanjay Jain10388146880
Henrik Jeldtoft Jensen102128648138
Dirk Helbing10164256810
Oliver G. Pybus10044745313
Andrew P. Dobson9832244211
Carel P. van Schaik9432926908
Seth Lloyd9249050159
Andrew W. Lo8537851440
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

Princeton University
146.7K papers, 9.1M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

University of California, Berkeley
265.6K papers, 16.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
202241
2021297
2020309
2019263
2018231