scispace - formally typeset
Search or ask a question
Institution

Santa Fe Institute

NonprofitSanta Fe, New Mexico, United States
About: Santa Fe Institute is a nonprofit organization based out in Santa Fe, New Mexico, United States. It is known for research contribution in the topics: Population & Complex network. The organization has 558 authors who have published 4558 publications receiving 396015 citations. The organization is also known as: SFI.


Papers
More filters
Journal ArticleDOI
TL;DR: A dynamic bioenergetic model is presented that couples individual energetics and population dynamics to predict current lizard ranges and those following climate warming and highlights the limitations of correlative models and the need for more dynamic models of species’ ranges.
Abstract: I present a dynamic bioenergetic model that couples individual energetics and population dynamics to predict current lizard ranges and those following climate warming. The model predictions are uniquely based on first principles of morphology, life history, and thermal physiology. I apply the model to five populations of a widespread North American lizard, Sceloporus undulatus, to examine how geographic variation in traits and life histories influences ranges. This geographic variation reflects the potential for species to adapt to environmental change. I then consider the range dynamics of the closely related Sceloporus graciosus. Comparing predicted ranges and actual current ranges reveals how dispersal limitations, species interactions, and habitat requirements influence the occupied portions of thermally suitable ranges. The dynamic model predicts individualistic responses to a uniform 3°C warming but a northward shift in the northern range boundary for all populations and species. In contra...

240 citations

Journal ArticleDOI
TL;DR: Perceived risk of infection and precautionary behavior can be dynamic in time, and differ by demographic characteristics and geographical locations, which will likely influence the effectiveness of disease control measures.
Abstract: The trajectory of an infectious disease outbreak is affected by the behavior of individuals, and the behavior is often related to individuals' risk perception. We assessed temporal changes and geographical differences in risk perceptions and precautionary behaviors in response to H1N1 influenza. 1,290 US adults completed an online survey on risk perceptions, interests in pharmaceutical interventions (preventive intervention and curative intervention), and engagement in precautionary activities (information seeking activities and taking quarantine measures) in response to H1N1 influenza between April 28 and May 27 2009. Associations of risk perceptions and precautionary behaviors with respondents' sex, age, and household size were analyzed. Linear and quadratic time trends were assessed by regression analyses. Geographic differences in risk perception and precautionary behaviors were evaluated. Predictors of willingness to take pharmaceutical intervention were analyzed. Respondents from larger households reported stronger interest in taking medications and engaged in more precautionary activities, as would be normatively predicted. Perceived risk increased over time, whereas interest in pharmaceutical preventive interventions and the engagement in some precautionary activities decreased over time. Respondents who live in states with higher H1N1 incidence per population perceived a higher likelihood of influenza infection, but did not express greater interests in pharmaceutical interventions, nor did they engage in a higher degree of precautionary activities. Perceived likelihood of influenza infection, willingness to take medications and engagement in information seeking activities were higher for women than men. Perceived risk of infection and precautionary behavior can be dynamic in time, and differ by demographic characteristics and geographical locations. These patterns will likely influence the effectiveness of disease control measures.

240 citations

Journal ArticleDOI
TL;DR: This paper discusses possible networks that can be defined for the air transport and focuses on networks of airports connected by flights, reviewing several papers investigating the topology of these networks and their dynamics for time scales ranging from years to intraday intervals.
Abstract: Air transport is a key infrastructure of modern societies. In this paper we review some recent approaches to air transport, which make extensive use of theory of complex networks. We discuss possible networks that can be defined for the air transport and we focus our attention to networks of airports connected by flights. We review several papers investigating the topology of these networks and their dynamics for time scales ranging from years to intraday intervals, and consider also the resilience properties of air networks to extreme events. Finally we discuss the results of some recent papers investigating the dynamics on air transport network, with emphasis on passengers traveling in the network and epidemic spreading.

239 citations

Posted Content
Mark Newman1
TL;DR: In this paper, it was shown that one's acquaintances, one's immediate neighbors in the acquaintance network, are far from being a random sample of the population, and that this biases the numbers of neighbors two and more steps away.
Abstract: Recent work has demonstrated that many social networks, and indeed many networks of other types also, have broad distributions of vertex degree. Here we show that this has a substantial impact on the shape of ego-centered networks, i.e., sets of network vertices that are within a given distance of a specified central vertex, the ego. This in turn affects concepts and methods based on ego-centered networks, such as snowball sampling and the "ripple effect". In particular, we argue that one's acquaintances, one's immediate neighbors in the acquaintance network, are far from being a random sample of the population, and that this biases the numbers of neighbors two and more steps away. We demonstrate this concept using data drawn from academic collaboration networks, for which, as we show, current simple theories for the typical size of ego-centered networks give numbers that differ greatly from those measured in reality. We present an improved theoretical model which gives significantly better results.

239 citations

Journal ArticleDOI
TL;DR: Analysis of cytotoxic T lymphocyte responses restricted by HLA-B*1503 suggests that subdominant responses can contribute to in vivo viral control and that high HLA allele frequencies may drive the elimination ofSubdominant yet effective epitopes from circulating viral populations.
Abstract: Despite limited data supporting the superiority of dominant over subdominant responses, immunodominant epitopes represent the preferred vaccine candidates. To address the function of subdominant responses in human immunodeficiency virus infection, we analyzed cytotoxic T lymphocyte responses restricted by HLA-B*1503, a rare allele in a cohort infected with clade B, although common in one infected with clade C. HLA-B*1503 was associated with reduced viral loads in the clade B cohort but not the clade C cohort, although both shared the immunodominant response. Clade B viral control was associated with responses to several subdominant cytotoxic T lymphocyte epitopes, whereas their clade C variants were less well recognized. These data suggest that subdominant responses can contribute to in vivo viral control and that high HLA allele frequencies may drive the elimination of subdominant yet effective epitopes from circulating viral populations.

238 citations


Authors

Showing all 606 results

NameH-indexPapersCitations
James Hone127637108193
James H. Brown12542372040
Alan S. Perelson11863266767
Mark Newman117348168598
Bette T. Korber11739249526
Marten Scheffer11135073789
Peter F. Stadler10390156813
Sanjay Jain10388146880
Henrik Jeldtoft Jensen102128648138
Dirk Helbing10164256810
Oliver G. Pybus10044745313
Andrew P. Dobson9832244211
Carel P. van Schaik9432926908
Seth Lloyd9249050159
Andrew W. Lo8537851440
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

Princeton University
146.7K papers, 9.1M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

University of California, Berkeley
265.6K papers, 16.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
202241
2021297
2020309
2019263
2018231