scispace - formally typeset
Search or ask a question
Institution

Santa Fe Institute

NonprofitSanta Fe, New Mexico, United States
About: Santa Fe Institute is a nonprofit organization based out in Santa Fe, New Mexico, United States. It is known for research contribution in the topics: Population & Complex network. The organization has 558 authors who have published 4558 publications receiving 396015 citations. The organization is also known as: SFI.


Papers
More filters
Journal ArticleDOI
TL;DR: The question arose as the discipline sought to develop recommendations for investments in computational infrastructure that would enable the discipline to address its most compelling questions: what are archaeology’s most important scientific challenges?
Abstract: Archaeology is a source of essential data regarding the fundamental nature of human societies. Researchers across the behavioral and social sciences use archeological data in framing foundational arguments. Archaeological evidence frequently undergirds debate on contemporary issues. We propose here to answer “What are archaeology’s most important scientific challenges?” The question arose as we sought to develop recommendations for investments in computational infrastructure that would enable the discipline to address its most compelling questions. Absent a list of these questions, we undertook to develop our own.

181 citations

Journal ArticleDOI
01 Jan 2011-EPL
TL;DR: In this article, it was shown that the Shannon-Khinchin axioms of K1, K3 and K4 provide a unique entropy, i.e. Boltzmann-Gibbs entropy.
Abstract: Motivated by the hope that the thermodynamical framework might be extended to strongly interacting statistical systems —complex systems in particular— a number of generalized entropies has been proposed in the past. So far the understanding of their fundamental origin has remained unclear. Here we address this question from first principles. We start by observing that many statistical systems fulfill a set of three general conditions (Shannon-Khinchin axioms, K1–K3). A fourth condition (separability) holds for non-interacting, uncorrelated or Markovian systems only (Shannon-Khinchin axiom, K4). If all four axioms hold the Shannon theorem provides a unique entropy, , i.e. Boltzmann-Gibbs entropy. Here we ask about the consequences of violating the 4th axiom while assuming the first three to hold. By a simple scaling argument we prove that under these conditions each statistical system is characterized by a unique pair of scaling exponents (c, d) in the large size limit. These exponents define equivalence classes for all interacting and non-interacting systems and parametrize a unique entropy, , where Γ(a,b) is the incomplete Gamma function. It covers all systems respecting K1–K3. A series of known entropies can be classified in terms of these equivalence classes. Corresponding distribution functions are special forms of Lambert- exponentials containing —as special cases— Boltzmann, stretched exponential and Tsallis distributions (power laws) —all widely abundant in Nature. In the derivation we assume , with g some function, however more general entropic forms can be classified along the same lines. This is to our knowledge the first ab initio justification for generalized entropies. We discuss a physical example displaying two sets of scaling exponents depending on the external parameters.

181 citations

Journal ArticleDOI
TL;DR: It is suggested that greater effort be focused on evaluating MTE's underlying theory and simplifying assumptions to help delineate the scope of MTE, generate new theory and shed light on fundamental aspects of biological form and function.
Abstract: The metabolic theory of ecology (MTE) predicts the effects of body size and temperature on metabolism through considerations of vascular distribution networks and biochemical kinetics. MTE has also been extended to characterise processes from cellular to global levels. MTE has generated both enthusiasm and controversy across a broad range of research areas. However, most efforts that claim to validate or invalidate MTE have focused on testing predictions. We argue that critical evaluation of MTE also requires strong tests of both its theoretical foundations and simplifying assumptions. To this end, we synthesise available information and find that MTE's original derivations require additional assumptions to obtain the full scope of attendant predictions. Moreover, although some of MTE's simplifying assumptions are well supported by data, others are inconsistent with empirical tests and even more remain untested. Further, although many predictions are empirically supported on average, work remains to explain the often large variability in data. We suggest that greater effort be focused on evaluating MTE's underlying theory and simplifying assumptions to help delineate the scope of MTE, generate new theory and shed light on fundamental aspects of biological form and function.

180 citations

Posted Content
TL;DR: Barbera as discussed by the authors replaced the decisive voter with the weaker notion of a pivotal voter, thereby shortening the first step, but complicating the second step, and gave three brief proofs, all of which turn on replacing the decisive/pivotal voter with an extremely pivotal voter (a voter who by unilaterally changing his vote can move some alternative from the bottom of the social ranking to the top).
Abstract: Arrow's original proof of his impossibility theorem proceeded in two steps: showing the existence of a decisive voter, and then showing that a decisive voter is a dictator. Barbera replaced the decisive voter with the weaker notion of a pivotal voter, thereby shortening the first step, but complicating the second step. I give three brief proofs, all of which turn on replacing the decisive/pivotal voter with an extremely pivotal voter (a voter who by unilaterally changing his vote can move some alternative from the bottom of the social ranking to the top), thereby simplifying both steps in Arrow's proof. My first proof is the most straightforward, and the second uses Condorcet preferences (which are transformed into each other by moving the bottom alternative to the top). The third (and shortest) proof proceeds by reinterpreting Step 1 of the first proof as saying that all social decisions are made the same way (neutrality).

180 citations

Journal ArticleDOI
TL;DR: It is shown that “survival of the flattest” can also occur in biological entities by analyzing the outcome of competition between two viroid species coinfecting the same plant.
Abstract: The “survival of the fittest” is the paradigm of Darwinian evolution in which the best-adapted replicators are favored by natural selection. However, at high mutation rates, the fittest organisms are not necessarily the fastest replicators but rather are those that show the greatest robustness against deleterious mutational effects, even at the cost of a low replication rate. This scenario, dubbed the “survival of the flattest”, has so far only been shown to operate in digital organisms. We show that “survival of the flattest” can also occur in biological entities by analyzing the outcome of competition between two viroid species coinfecting the same plant. Under optimal growth conditions, a viroid species characterized by fast population growth and genetic homogeneity outcompeted a viroid species with slow population growth and a high degree of variation. In contrast, the slow-growth species was able to outcompete the fast species when the mutation rate was increased. These experimental results were supported by an in silico model of competing viroid quasispecies.

180 citations


Authors

Showing all 606 results

NameH-indexPapersCitations
James Hone127637108193
James H. Brown12542372040
Alan S. Perelson11863266767
Mark Newman117348168598
Bette T. Korber11739249526
Marten Scheffer11135073789
Peter F. Stadler10390156813
Sanjay Jain10388146880
Henrik Jeldtoft Jensen102128648138
Dirk Helbing10164256810
Oliver G. Pybus10044745313
Andrew P. Dobson9832244211
Carel P. van Schaik9432926908
Seth Lloyd9249050159
Andrew W. Lo8537851440
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

Princeton University
146.7K papers, 9.1M citations

89% related

Max Planck Society
406.2K papers, 19.5M citations

89% related

University of California, Berkeley
265.6K papers, 16.8M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202341
202241
2021297
2020309
2019263
2018231