scispace - formally typeset
Search or ask a question
Institution

Sapienza University of Rome

EducationRome, Lazio, Italy
About: Sapienza University of Rome is a education organization based out in Rome, Lazio, Italy. It is known for research contribution in the topics: Population & Large Hadron Collider. The organization has 62002 authors who have published 155468 publications receiving 4397244 citations. The organization is also known as: La Sapienza & Università La Sapienza di Roma.


Papers
More filters
Journal ArticleDOI
02 Jun 1994-Nature
TL;DR: It is reported here that hepatitis B virus isolates derived from two chronically infected patients display variant epitopes that act as natural TCR antagonists with the capacity to inhibit the CTL response to the wild-type epitope.
Abstract: IT has been suggested that mutations within immunodominant cytotoxic T-lymphocyte (CTL) epitopes may be exploited by viruses to evade protective immune responses critical for clearance1–4. Viral escape could originate from passive mechanisms, such as mutations within crucial CTL epitopes, either affecting major histocompatibility complex binding or T-cell antigen receptor (TCR) recognition. Additionally, it has recently been shown that substitutions of TCR contact sites can yield analogue peptides that can still interact with the T-cell receptor but be unable to deliver a full stimulatory signal, thus inducing anergy5 or acting as an antagonist for the TCR6–8. We report here that hepatitis B virus isolates derived from two chronically infected patients display variant epitopes that act as natural TCR antagonists with the capacity to inhibit the CTL response to the wild-type epitope. During natural infection, TCR antagonist mutations of CTL epitopes could contribute to the development of viral persistence, especially if the antiviral CTL response is monospecific or the epitope is strongly immunodominant.

543 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of bubble modeling and acoustic observations of rising bubbles was used to determine what fraction of the methane transported by bubbles will reach the atmosphere, and the model was validated using methane and argon bubble dissolution measurements obtained from the literature for deep, oxic, saline water with excellent results.
Abstract: There is growing concern about the transfer of methane originating from water bodies to the atmosphere. Methane from sediments can reach the atmosphere directly via bubbles or indirectly via vertical turbulent transport. This work quantifies methane gas bubble dissolution using a combination of bubble modeling and acoustic observations of rising bubbles to determine what fraction of the methane transported by bubbles will reach the atmosphere. The bubble model predicts the evolving bubble size, gas composition, and rise distance and is suitable for almost all aquatic environments. The model was validated using methane and argon bubble dissolution measurements obtained from the literature for deep, oxic, saline water with excellent results. Methane bubbles from within the hydrate stability zone (typically below ∼500 m water depth in the ocean) are believed to form an outer hydrate rim. To explain the subsequent slow dissolution, a model calibration was performed using bubble dissolution data from the literature measured within the hydrate stability zone. The calibrated model explains the impressively tall flares (>1300 m) observed in the hydrate stability zone of the Black Sea. This study suggests that only a small amount of methane reaches the surface at active seep sites in the Black Sea, and this only from very shallow water areas (<100 m). Clearly, the Black Sea and the ocean are rather effective barriers against the transfer of bubble methane to the atmosphere, although substantial amounts of methane may reach the surface in shallow lakes and reservoirs.

542 citations

Journal ArticleDOI
TL;DR: Technical advice is given, normative values are reported, and special clinical applications of somatosensory-evoked potentials are discussed, which are drawing increasing interest.

541 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +955 moreInstitutions (96)
TL;DR: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016, and observed a transient gravitational-wave signal determined to be the coalescence of two black holes.
Abstract: Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of $10^{-23}/\sqrt{\mathrm{Hz}}$ at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14th, 2015 the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of three improvement in the signal-to-noise ratio for binary black hole systems similar in masses to GW150914.

539 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that there exists a universal unitarity triangle for all models, like the SM, the Two Higgs Doublet Models I and II and the MSSM with minimal flavour violation, that do not have any new operators beyond those present in the SM and in which all flavour changing transitions are governed by the CKM matrix.

539 citations


Authors

Showing all 62745 results

NameH-indexPapersCitations
Charles A. Dinarello1901058139668
Gregory Y.H. Lip1693159171742
Peter A. R. Ade1621387138051
H. Eugene Stanley1541190122321
Suvadeep Bose154960129071
P. de Bernardis152680117804
Bart Staels15282486638
Alessandro Melchiorri151674116384
Andrew H. Jaffe149518110033
F. Piacentini149531108493
Subir Sarkar1491542144614
Albert Bandura148255276143
Carlo Rovelli1461502103550
Robert C. Gallo14582568212
R. Kowalewski1431815135517
Network Information
Related Institutions (5)
University of Padua
114.8K papers, 3.6M citations

98% related

University of Bologna
115.1K papers, 3.4M citations

97% related

University of Milan
139.7K papers, 4.6M citations

97% related

University of Turin
77.9K papers, 2.4M citations

97% related

Tel Aviv University
115.9K papers, 3.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023405
20221,106
20219,796
20209,753
20198,332
20187,615