scispace - formally typeset
Search or ask a question
Institution

Sapienza University of Rome

EducationRome, Lazio, Italy
About: Sapienza University of Rome is a education organization based out in Rome, Lazio, Italy. It is known for research contribution in the topics: Population & Medicine. The organization has 62002 authors who have published 155468 publications receiving 4397244 citations. The organization is also known as: La Sapienza & Università La Sapienza di Roma.


Papers
More filters
Journal ArticleDOI
A. A. Abdo1, A. A. Abdo2, Markus Ackermann3, Marco Ajello3  +285 moreInstitutions (39)
TL;DR: The first Fermi-LAT catalog (1FGL) as mentioned in this paper contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4 sigma.
Abstract: We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4 sigma. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.

1,412 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, Frederico Arroja4  +321 moreInstitutions (79)
TL;DR: In this article, the authors present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey.
Abstract: We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/ dlnk = −0.003 ± 0.007 when combined with the Planck lensing likelihood. When the Planck high-l polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(φ) ∝ φ2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth over the range of scales 0.008 Mpc-1 ≲ k ≲ 0.1 Mpc-1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles l ≈ 20−40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non-Gaussianity bounds, we constrain models with generalized Lagrangians, including Galileon models and axion monodromy models. The Planck data are consistent with adiabatic primordial perturbations, and the estimated values for the parameters of the base Λ cold dark matter (ΛCDM) model are not significantly altered when more general initial conditions are admitted. In correlated mixed adiabatic and isocurvature models, the 95% CL upper bound for the non-adiabatic contribution to the observed CMB temperature variance is | αnon - adi | < 1.9%, 4.0%, and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature modes, respectively. We have tested inflationary models producing an anisotropic modulation of the primordial curvature power spectrum findingthat the dipolar modulation in the CMB temperature field induced by a CDM isocurvature perturbation is not preferred at a statistically significant level. We also establish tight constraints on a possible quadrupolar modulation of the curvature perturbation. These results are consistent with the Planck 2013 analysis based on the nominal mission data and further constrain slow-roll single-field inflationary models, as expected from the increased precision of Planck data using the full set of observations.

1,401 citations

Journal ArticleDOI
TL;DR: JAM is a new component of endothelial and epithelial junctions that play a role in regulating monocyte transmigration and is identified as a novel immunoglobulin gene superfamily member that consists of two V-type Ig domains.
Abstract: Tight junctions are the most apical components of endothelial and epithelial intercellular cleft. In the endothelium these structures play an important role in the control of paracellular permeability to circulating cells and solutes. The only known integral membrane protein localized at sites of membrane–membrane interaction of tight junctions is occludin, which is linked inside the cells to a complex network of cytoskeletal and signaling proteins. We report here the identification of a novel protein (junctional adhesion molecule [JAM]) that is selectively concentrated at intercellular junctions of endothelial and epithelial cells of different origins. Confocal and immunoelectron microscopy shows that JAM codistributes with tight junction components at the apical region of the intercellular cleft. A cDNA clone encoding JAM defines a novel immunoglobulin gene superfamily member that consists of two V-type Ig domains. An mAb directed to JAM (BV11) was found to inhibit spontaneous and chemokine-induced monocyte transmigration through an endothelial cell monolayer in vitro. Systemic treatment of mice with BV11 mAb blocked monocyte infiltration upon chemokine administration in subcutaneous air pouches. Thus, JAM is a new component of endothelial and epithelial junctions that play a role in regulating monocyte transmigration.

1,395 citations

Journal ArticleDOI
Jan Schipper1, Jan Schipper2, Janice Chanson2, Janice Chanson1, Federica Chiozza3, Neil A. Cox1, Neil A. Cox2, Michael R. Hoffmann2, Michael R. Hoffmann1, Vineet Katariya2, John F. Lamoreux2, John F. Lamoreux4, Ana S. L. Rodrigues5, Ana S. L. Rodrigues6, Simon N. Stuart2, Simon N. Stuart1, Helen J. Temple2, Jonathan E. M. Baillie7, Luigi Boitani3, Thomas E. Lacher4, Thomas E. Lacher1, Russell A. Mittermeier, Andrew T. Smith8, Daniel Absolon, John M. Aguiar4, John M. Aguiar1, Giovanni Amori, Noura Bakkour9, Noura Bakkour1, Ricardo Baldi10, Ricardo Baldi11, Richard J. Berridge, Jon Bielby7, Jon Bielby12, Patricia Ann Black13, Julian Blanc, Thomas M. Brooks1, Thomas M. Brooks14, Thomas M. Brooks15, James Burton16, James Burton17, Thomas M. Butynski18, Gianluca Catullo, Roselle Chapman, Zoe Cokeliss7, Ben Collen7, Jim Conroy, Justin Cooke, Gustavo A. B. da Fonseca19, Gustavo A. B. da Fonseca20, Andrew E. Derocher21, Holly T. Dublin, J. W. Duckworth10, Louise H. Emmons22, Richard H. Emslie2, Marco Festa-Bianchet23, Matthew N. Foster, Sabrina Foster24, David L. Garshelis25, C. Cormack Gates26, Mariano Gimenez-Dixon, Susana González, José F. González-Maya, Tatjana C. Good27, Geoffrey Hammerson28, Philip S. Hammond29, D. C. D. Happold30, Meredith Happold30, John Hare, Richard B. Harris31, Clare E. Hawkins32, Clare E. Hawkins14, Mandy Haywood33, Lawrence R. Heaney34, Simon Hedges10, Kristofer M. Helgen22, Craig Hilton-Taylor2, Syed Ainul Hussain35, Nobuo Ishii36, Thomas Jefferson37, Richard K. B. Jenkins38, Charlotte H. Johnston8, Mark Keith39, Jonathan Kingdon40, David Knox1, Kit M. Kovacs41, Kit M. Kovacs42, Penny F. Langhammer8, Kristin Leus43, Rebecca L. Lewison44, Gabriela Lichtenstein, Lloyd F. Lowry45, Zoe Macavoy12, Georgina M. Mace12, David Mallon46, Monica Masi, Meghan W. McKnight, Rodrigo A. Medellín47, Patricia Medici48, G. Mills, Patricia D. Moehlman, Sanjay Molur, Arturo Mora2, Kristin Nowell, John F. Oates49, Wanda Olech, William R.L. Oliver, Monik Oprea22, Bruce D. Patterson34, William F. Perrin37, Beth Polidoro2, Caroline M. Pollock2, Abigail Powel50, Yelizaveta Protas9, Paul A. Racey38, Jim Ragle2, Pavithra Ramani24, Galen B. Rathbun51, Randall R. Reeves, Stephen B. Reilly37, John E. Reynolds52, Carlo Rondinini3, Ruth Grace Rosell-Ambal1, Monica Rulli, Anthony B. Rylands, Simona Savini, Cody J. Schank24, Wes Sechrest24, Caryn Self-Sullivan, Alan Shoemaker2, Claudio Sillero-Zubiri40, Naamal De Silva, David E. Smith24, Chelmala Srinivasulu53, P. J. Stephenson, Nico van Strien54, Bibhab Kumar Talukdar55, Barbara L. Taylor37, Rob Timmins, Diego G. Tirira, Marcelo F. Tognelli11, Marcelo F. Tognelli56, Katerina Tsytsulina, Liza M. Veiga57, Jean-Christophe Vié2, Elizabeth A. Williamson58, Sarah A. Wyatt, Yan Xie, Bruce E. Young28 
Conservation International1, International Union for Conservation of Nature and Natural Resources2, Sapienza University of Rome3, Texas A&M University4, University of Cambridge5, Instituto Superior Técnico6, Zoological Society of London7, Arizona State University8, Columbia University9, Wildlife Conservation Society10, National Scientific and Technical Research Council11, Imperial College London12, National University of Tucumán13, University of Tasmania14, University of the Philippines Los Baños15, Earthwatch Institute16, University of Edinburgh17, Drexel University18, Global Environment Facility19, Universidade Federal de Minas Gerais20, University of Alberta21, Smithsonian Institution22, Université de Sherbrooke23, University of Virginia24, Minnesota Department of Natural Resources25, University of Calgary26, James Cook University27, NatureServe28, University of St Andrews29, Australian National University30, University of Montana31, General Post Office32, University of Otago33, Field Museum of Natural History34, Wildlife Institute of India35, Tokyo Woman's Christian University36, National Oceanic and Atmospheric Administration37, University of Aberdeen38, University of the Witwatersrand39, University of Oxford40, University Centre in Svalbard41, Norwegian Polar Institute42, Copenhagen Zoo43, San Diego State University44, University of Alaska Fairbanks45, Manchester Metropolitan University46, National Autonomous University of Mexico47, University of Kent48, City University of New York49, Victoria University of Wellington50, California Academy of Sciences51, Mote Marine Laboratory52, Osmania University53, White Oak Conservation54, Aaranyak55, University of California, Davis56, Museu Paraense Emílio Goeldi57, University of Stirling58
10 Oct 2008-Science
TL;DR: In this paper, the authors present a comprehensive assessment of the conservation status and distribution of the world's mammals, including marine mammals, using data collected by 1700+ experts, covering all 5487 species.
Abstract: Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action.

1,383 citations


Authors

Showing all 62745 results

NameH-indexPapersCitations
Charles A. Dinarello1901058139668
Gregory Y.H. Lip1693159171742
Peter A. R. Ade1621387138051
H. Eugene Stanley1541190122321
Suvadeep Bose154960129071
P. de Bernardis152680117804
Bart Staels15282486638
Alessandro Melchiorri151674116384
Andrew H. Jaffe149518110033
F. Piacentini149531108493
Subir Sarkar1491542144614
Albert Bandura148255276143
Carlo Rovelli1461502103550
Robert C. Gallo14582568212
R. Kowalewski1431815135517
Network Information
Related Institutions (5)
University of Padua
114.8K papers, 3.6M citations

98% related

University of Bologna
115.1K papers, 3.4M citations

97% related

University of Milan
139.7K papers, 4.6M citations

97% related

University of Turin
77.9K papers, 2.4M citations

97% related

Tel Aviv University
115.9K papers, 3.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023405
20221,106
20219,797
20209,755
20198,332
20187,615