scispace - formally typeset
Search or ask a question
Institution

Savitribai Phule Pune University

EducationPune, India
About: Savitribai Phule Pune University is a education organization based out in Pune, India. It is known for research contribution in the topics: Thin film & Population. The organization has 7483 authors who have published 10622 publications receiving 216010 citations. The organization is also known as: University of Poona & University of Pune.


Papers
More filters
Journal ArticleDOI
TL;DR: Using long-term observations and coupled model experiments, this work provides compelling evidence that the enhanced Indian Ocean warming potentially weakens the land-sea thermal contrast, dampens the summer monsoon Hadley circulation, and thereby reduces the rainfall over parts of South Asia.
Abstract: There are large uncertainties looming over the status and fate of the South Asian summer monsoon, with several studies debating whether the monsoon is weakening or strengthening in a changing climate. Our analysis using multiple observed datasets demonstrates a significant weakening trend in summer rainfall during 1901–2012 over the central-east and northern regions of India, along the Ganges-Brahmaputra-Meghna basins and the Himalayan foothills, where agriculture is still largely rain-fed. Earlier studies have suggested an increase in moisture availability and land-sea thermal gradient in the tropics due to anthropogenic warming, favouring an increase in tropical rainfall. Here we show that the land-sea thermal gradient over South Asia has been decreasing, due to rapid warming in the Indian Ocean and a relatively subdued warming over the subcontinent. Using long-term observations and coupled model experiments, we provide compelling evidence that the enhanced Indian Ocean warming potentially weakens the land-sea thermal contrast, dampens the summer monsoon Hadley circulation, and thereby reduces the rainfall over parts of South Asia.

522 citations

Journal ArticleDOI
R. Adam1, Peter A. R. Ade2, Nabila Aghanim3, M. I. R. Alves4  +281 moreInstitutions (69)
TL;DR: In this paper, the authors consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical components maps.
Abstract: Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.

515 citations

Journal ArticleDOI
TL;DR: The closely balanced energetics of the TiO2 polymorphs directly confirm the crossover in stability of nanophase polymorphs inferred by Zhang and Banfield (7).
Abstract: The energetics of the TiO2 polymorphs (rutile, anatase, and brookite) were studied by high temperature oxide melt drop solution calorimetry. Relative to bulk rutile, bulk brookite is 0.71 ± 0.38 kJ/mol (6) and bulk anatase is 2.61 ± 0.41 kJ/mol higher in enthalpy. The surface enthalpies of rutile, brookite, and anatase are 2.2 ± 0.2 J/m2, 1.0 ± 0.2 J/m2, and 0.4 ± 0.1 J/m2, respectively. The closely balanced energetics directly confirm the crossover in stability of nanophase polymorphs inferred by Zhang and Banfield (7). An amorphous sample with surface area of 34,600 m2/mol is 24.25 ± 0.88 kJ/mol higher in enthalpy than bulk rutile.

502 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +325 moreInstitutions (68)
TL;DR: The Planck 2013 likelihood as mentioned in this paper is a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature.
Abstract: This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, l, covering 2 ≤ l ≤ 2500. The main source of uncertainty at l ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ls. For l < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz, separating the cosmological CMB signal from diffuse Galactic foregrounds through a physically motivated Bayesian component separation technique. At l ≥ 50, we employ a correlated Gaussian likelihood approximation based on a fine-grained set of angular cross-spectra derived from multiple detector combinations between the 100, 143, and 217 GHz frequency channels, marginalising over power spectrum foreground templates. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals below a few μK2 at l ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at l ≲ 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4σ deviation from scale invariance, ns = 1. Increasing the multipole range beyond l ≃ 1500 does not increase our accuracy for the ΛCDM parameters, but instead allows us to study extensions beyond the standard model. We find no indication of significant departures from the ΛCDM framework. Finally, we report a tension between the Planck best-fit ΛCDM model and the low-l spectrum in the form of a power deficit of 5–10% at l ≲ 40, with a statistical significance of 2.5–3σ. Without a theoretically motivated model for this power deficit, we do not elaborate further on its cosmological implications, but note that this is our most puzzling finding in an otherwise remarkably consistent data set.

499 citations

Journal ArticleDOI
TL;DR: A clear knowledge of the molecule and its interactions at the molecular level not only may allow the rational design of molecular adjuvants but may also lead to the development of complement inhibitors and new therapeutic agents against infectious diseases.
Abstract: Complement protein C3 is a central molecule in the complement system whose activation is essential for all the important functions performed by this system. After four decades of research it is now well established that C3 functions like a double-edged sword: on the one hand it promotes phagocytosis, supports local inflammatory responses against pathogens, and instructs the adaptive immune response to select the appropriate antigens for a humoral response; on the other hand its unregulated activation leads to host cell damage. In addition, its interactions with the proteins of foreign pathogens may provide a mechanism by which these microorganisms evade complement attack. Therefore, a clear knowledge of the molecule and its interactions at the molecular level not only may allow the rational design of molecular adjuvants but may also lead to the development of complement inhibitors and new therapeutic agents against infectious diseases.

494 citations


Authors

Showing all 7597 results

NameH-indexPapersCitations
Rakesh K. Jain2001467177727
Suvadeep Bose154960129071
Subhasish Mitra9852054206
Sandeep Kumar94156338652
Murali Sastry7831133110
Tarun Souradeep7531350771
Subhabrata Mitra739350414
Axel Brandenburg7385325317
Thanu Padmanabhan6848624870
Ashwani Kumar6670318099
Martin F. Jarrold6632818230
A. Ain6112224242
Satishchandra Ogale6030819368
Subhash Padhye5621611480
Sandeep Singh5267011566
Network Information
Related Institutions (5)
Banaras Hindu University
23.9K papers, 464.6K citations

94% related

Panjab University, Chandigarh
18.7K papers, 461K citations

94% related

Jadavpur University
27.6K papers, 422K citations

93% related

Council of Scientific and Industrial Research
31.8K papers, 707.7K citations

92% related

University of Delhi
36.4K papers, 666.9K citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202352
2022151
20211,070
2020890
2019792
2018783