scispace - formally typeset
Search or ask a question
Institution

Schrödinger

Company
About: Schrödinger is a based out in . It is known for research contribution in the topics: Sputtering & Cycloaddition. The organization has 1621 authors who have published 2200 publications receiving 81554 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that database enrichment is improved with proper preparation and that neglecting certain steps of the preparation process produces a systematic degradation in enrichments, which can be large for some targets.
Abstract: Structure-based virtual screening plays an important role in drug discovery and complements other screening approaches. In general, protein crystal structures are prepared prior to docking in order to add hydrogen atoms, optimize hydrogen bonds, remove atomic clashes, and perform other operations that are not part of the x-ray crystal structure refinement process. In addition, ligands must be prepared to create 3-dimensional geometries, assign proper bond orders, and generate accessible tautomer and ionization states prior to virtual screening. While the prerequisite for proper system preparation is generally accepted in the field, an extensive study of the preparation steps and their effect on virtual screening enrichments has not been performed. In this work, we systematically explore each of the steps involved in preparing a system for virtual screening. We first explore a large number of parameters using the Glide validation set of 36 crystal structures and 1,000 decoys. We then apply a subset of protocols to the DUD database. We show that database enrichment is improved with proper preparation and that neglecting certain steps of the preparation process produces a systematic degradation in enrichments, which can be large for some targets. We provide examples illustrating the structural changes introduced by the preparation that impact database enrichment. While the work presented here was performed with the Protein Preparation Wizard and Glide, the insights and guidance are expected to be generalizable to structure-based virtual screening with other docking methods.

3,658 citations

Journal ArticleDOI
TL;DR: Together, the improvements made to both the small molecule and protein force field lead to a high level of accuracy in predicting protein-ligand binding measured over a wide range of targets and ligands (less than 1 kcal/mol RMS error) representing a 30% improvement over earlier variants of the OPLS force field.
Abstract: The parametrization and validation of the OPLS3 force field for small molecules and proteins are reported. Enhancements with respect to the previous version (OPLS2.1) include the addition of off-atom charge sites to represent halogen bonding and aryl nitrogen lone pairs as well as a complete refit of peptide dihedral parameters to better model the native structure of proteins. To adequately cover medicinal chemical space, OPLS3 employs over an order of magnitude more reference data and associated parameter types relative to other commonly used small molecule force fields (e.g., MMFF and OPLS_2005). As a consequence, OPLS3 achieves a high level of accuracy across performance benchmarks that assess small molecule conformational propensities and solvation. The newly fitted peptide dihedrals lead to significant improvements in the representation of secondary structure elements in simulated peptides and native structure stability over a number of proteins. Together, the improvements made to both the small mole...

2,127 citations

Journal ArticleDOI
TL;DR: Loop quantum gravity as discussed by the authors is a background-independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry.
Abstract: The goal of this review is to present an introduction to loop quantum gravity—a background-independent, non-perturbative approach to the problem of unification of general relativity and quantum physics, based on a quantum theory of geometry. Our presentation is pedagogical. Thus, in addition to providing a bird's eye view of the present status of the subject, the review should also serve as a vehicle to enter the field and explore it in detail. To aid non-experts, very little is assumed beyond elements of general relativity, gauge theories and quantum field theory. While the review is essentially self-contained, the emphasis is on communicating the underlying ideas and the significance of results rather than on presenting systematic derivations and detailed proofs. (These can be found in the listed references.) The subject can be approached in different ways. We have chosen one which is deeply rooted in well-established physics and also has sufficient mathematical precision to ensure that there are no hidden infinities. In order to keep the review to a reasonable size, and to avoid overwhelming non-experts, we have had to leave out several interesting topics, results and viewpoints; this is meant to be an introduction to the subject rather than an exhaustive review of it.

1,804 citations

Journal ArticleDOI
01 May 2004-Proteins
TL;DR: The overall results are the best reported to date, and the combination of an accurate all‐atom energy function, efficient methods for loop buildup and side‐chain optimization, and, especially for the longer loops, the hierarchical refinement protocol is attributed.
Abstract: The application of all-atom force fields (and explicit or implicit solvent models) to protein homology-modeling tasks such as side-chain and loop prediction remains challenging both because of the expense of the individual energy calculations and because of the difficulty of sampling the rugged all-atom energy surface. Here we address this challenge for the problem of loop prediction through the development of numerous new algorithms, with an emphasis on multiscale and hierarchical techniques. As a first step in evaluating the performance of our loop prediction algorithm, we have applied it to the problem of reconstructing loops in native structures; we also explicitly include crystal packing to provide a fair comparison with crystal structures. In brief, large numbers of loops are generated by using a dihedral angle-based buildup procedure followed by iterative cycles of clustering, side-chain optimization, and complete energy minimization of selected loop structures. We evaluate this method by using the largest test set yet used for validation of a loop prediction method, with a total of 833 loops ranging from 4 to 12 residues in length. Average/median backbone root-mean-square deviations (RMSDs) to the native structures (superimposing the body of the protein, not the loop itself) are 0.42/0.24 A for 5 residue loops, 1.00/0.44 A for 8 residue loops, and 2.47/1.83 A for 11 residue loops. Median RMSDs are substantially lower than the averages because of a small number of outliers; the causes of these failures are examined in some detail, and many can be attributed to errors in assignment of protonation states of titratable residues, omission of ligands from the simulation, and, in a few cases, probable errors in the experimentally determined structures. When these obvious problems in the data sets are filtered out, average RMSDs to the native structures improve to 0.43 A for 5 residue loops, 0.84 A for 8 residue loops, and 1.63 A for 11 residue loops. In the vast majority of cases, the method locates energy minima that are lower than or equal to that of the minimized native loop, thus indicating that sampling rarely limits prediction accuracy. The overall results are, to our knowledge, the best reported to date, and we attribute this success to the combination of an accurate all-atom energy function, efficient methods for loop buildup and side-chain optimization, and, especially for the longer loops, the hierarchical refinement protocol.

1,774 citations

Journal ArticleDOI
TL;DR: A novel protein-ligand docking method that accurately accounts for both ligand and receptor flexibility by iteratively combining rigid receptor docking (Glide) with protein structure prediction (Prime) techniques is presented.
Abstract: We present a novel protein-ligand docking method that accurately accounts for both ligand and receptor flexibility by iteratively combining rigid receptor docking (Glide) with protein structure prediction (Prime) techniques. While traditional rigid-receptor docking methods are useful when the receptor structure does not change substantially upon ligand binding, success is limited when the protein must be "induced" into the correct binding conformation for a given ligand. We provide an in-depth description of our novel methodology and present results for 21 pharmaceutically relevant examples. Traditional rigid-receptor docking for these 21 cases yields an average RMSD of 5.5 A. The average ligand RMSD for docking to a flexible receptor for the 21 pairs is 1.4 A; the RMSD is < or =1.8 A for 18 of the cases. For the three cases with RMSDs greater than 1.8 A, the core of the ligand is properly docked and all key protein/ligand interactions are captured.

1,612 citations


Authors

Showing all 1631 results

NameH-indexPapersCitations
Carlo Rovelli1461502103550
Stephen Fairhurst10942671657
Richard A. Friesner9736752729
Abhay Ashtekar9436637508
David E. Shaw8829842616
A. M. Vinogradov8636223091
Andrea Negri7924235311
George F. R. Ellis7645330364
Burkard Hillebrands7658623270
Vlatko Vedral7551233162
Klaus Friedrich7537419061
Ruhong Zhou7035218687
Lukas Schreiber6921714212
Lionel Tarassenko6739516265
Joachim R. Krenn6622417514
Network Information
Related Institutions (5)
University of Freiburg
77.2K papers, 2.8M citations

88% related

Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

87% related

University of Göttingen
86.3K papers, 3M citations

87% related

University of Tübingen
84.1K papers, 3M citations

87% related

University of Bonn
86.4K papers, 3.1M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
202216
202169
202076
201967
201861