scispace - formally typeset
Search or ask a question
Institution

Shanghai Jiao Tong University

EducationShanghai, Shanghai, China
About: Shanghai Jiao Tong University is a education organization based out in Shanghai, Shanghai, China. It is known for research contribution in the topics: Population & Cancer. The organization has 157524 authors who have published 184620 publications receiving 3451038 citations. The organization is also known as: Shanghai Communications University & Shanghai Jiaotong University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a content-centric transmission design in a cloud radio access network by incorporating multicasting and caching, and reformulates an equivalent sparse multicast beamforming (SBF) problem, transformed into the difference of convex programs and effectively solved using the convex-concave procedure algorithms.
Abstract: This paper presents a content-centric transmission design in a cloud radio access network by incorporating multicasting and caching. Users requesting the same content form a multicast group and are served by a same cluster of base stations (BSs) cooperatively. Each BS has a local cache, and it acquires the requested contents either from its local cache or from the central processor via backhaul links. We investigate the dynamic content-centric BS clustering and multicast beamforming with respect to both channel condition and caching status. We first formulate a mixed-integer nonlinear programming problem of minimizing the weighted sum of backhaul cost and transmit power under the quality-of-service constraint for each multicast group. Theoretical analysis reveals that all the BSs caching a requested content can be included in the BS cluster of this content, regardless of the channel conditions. Then, we reformulate an equivalent sparse multicast beamforming (SBF) problem. By adopting smoothed $\ell _{0}$ -norm approximation and other techniques, the SBF problem is transformed into the difference of convex programs and effectively solved using the convex-concave procedure algorithms. Simulation results demonstrate significant advantage of the proposed content-centric transmission. The effects of heuristic caching strategies are also evaluated.

468 citations

Journal ArticleDOI
01 Mar 2019-Science
TL;DR: It is now possible to fabricate wireless, battery-free vital signs monitoring systems based on ultrathin, “skin-like” measurement modules that can gently and noninvasively interface onto the skin of neonates with gestational ages down to the edge of viability.
Abstract: INTRODUCTION In neonatal intensive care units (NICUs), continuous monitoring of vital signs is essential, particularly in cases of severe prematurity. Current monitoring platforms require multiple hard-wired, rigid interfaces to a neonate’s fragile, underdeveloped skin and, in some cases, invasive lines inserted into their delicate arteries. These platforms and their wired interfaces pose risks for iatrogenic skin injury, create physical barriers for skin-to-skin parental/neonate bonding, and frustrate even basic clinical tasks. Technologies that bypass these limitations and provide additional, advanced physiological monitoring capabilities would directly address an unmet clinical need for a highly vulnerable population. RATIONALE It is now possible to fabricate wireless, battery-free vital signs monitoring systems based on ultrathin, “skin-like” measurement modules. These devices can gently and noninvasively interface onto the skin of neonates with gestational ages down to the edge of viability. Four essential advances in engineering science serve as the foundations for this technology: (i) schemes for wireless power transfer, low-noise sensing, and high-speed data communications via a single radio-frequency link with negligible absorption in biological tissues; (ii) efficient algorithms for real-time data analytics, signal processing, and dynamic baseline modulation implemented on the sensor platforms themselves; (iii) strategies for time-synchronized streaming of wireless data from two separate devices; and (iv) designs that enable visual inspection of the skin interface while also allowing magnetic resonance imaging and x-ray imaging of the neonate. The resulting systems can be much smaller in size, lighter in weight, and less traumatic to the skin than any existing alternative. RESULTS We report the realization of this class of NICU monitoring technology, embodied as a pair of devices that, when used in a time-synchronized fashion, can reconstruct full vital signs information with clinical-grade precision. One device mounts on the chest to capture electrocardiograms (ECGs); the other rests on the base of the foot to simultaneously record photoplethysmograms (PPGs). This binodal system captures and continuously transmits ECG, PPG, and (from each device) skin temperature data, yielding measurements of heart rate, heart rate variability, respiration rate, blood oxygenation, and pulse arrival time as a surrogate of systolic blood pressure. Successful tests on neonates with gestational ages ranging from 28 weeks to full term demonstrate the full range of functions in two level III NICUs. The thin, lightweight, low-modulus characteristics of these wireless devices allow for interfaces to the skin mediated by forces that are nearly an order of magnitude smaller than those associated with adhesives used for conventional hardware in the NICU. This reduction greatly lowers the potential for iatrogenic injuries. CONCLUSION The advances outlined here serve as the basis for a skin-like technology that not only reproduces capabilities currently provided by invasive, wired systems as the standard of care, but also offers multipoint sensing of temperature and continuous tracking of blood pressure, all with substantially safer device-skin interfaces and compatibility with medical imaging. By eliminating wired connections, these platforms also facilitate therapeutic skin-to-skin contact between neonates and parents, which is known to stabilize vital signs, reduce morbidity, and promote parental bonding. Beyond use in advanced hospital settings, these systems also offer cost-effective capabilities with potential relevance to global health.

467 citations

Journal ArticleDOI
TL;DR: This work used human plasma to find the most efficient method for sample preparation and compared four widely applied precipitation methods, using trichloroacetic acid, acetone, chloroform/methanol and ammonium sulfate, as well as ultrafiltration.

467 citations

Journal ArticleDOI
TL;DR: In this paper, Jin et al. considered purely stress-driven interactions between 60° non-screw lattice dislocation and coherent twin boundary (CTB) via molecular dynamics simulations for three face-centered cubic (fcc) metals, Cu, Ni and Al.

467 citations

Journal ArticleDOI
TL;DR: A deep learning framework that incorporates temporal and contextual information from tubelets obtained in videos, which dramatically improves the baseline performance of existing still-image detection frameworks when they are applied to videos is proposed, called T-CNN.
Abstract: The state-of-the-art performance for object detection has been significantly improved over the past two years. Besides the introduction of powerful deep neural networks, such as GoogleNet and VGG, novel object detection frameworks, such as R-CNN and its successors, Fast R-CNN, and Faster R-CNN, play an essential role in improving the state of the art. Despite their effectiveness on still images, those frameworks are not specifically designed for object detection from videos. Temporal and contextual information of videos are not fully investigated and utilized. In this paper, we propose a deep learning framework that incorporates temporal and contextual information from tubelets obtained in videos, which dramatically improves the baseline performance of existing still-image detection frameworks when they are applied to videos. It is called T-CNN, i.e., tubelets with convolutional neueral networks. The proposed framework won newly introduced an object-detection-from-video task with provided data in the ImageNet Large-Scale Visual Recognition Challenge 2015. Code is publicly available at https://github.com/myfavouritekk/T-CNN .

467 citations


Authors

Showing all 158621 results

NameH-indexPapersCitations
Meir J. Stampfer2771414283776
Richard A. Flavell2311328205119
Jie Zhang1784857221720
Yang Yang1712644153049
Lei Jiang1702244135205
Gang Chen1673372149819
Thomas S. Huang1461299101564
Barbara J. Sahakian14561269190
Jean-Laurent Casanova14484276173
Kuo-Chen Chou14348757711
Weihong Tan14089267151
Xin Wu1391865109083
David Y. Graham138104780886
Bin Liu138218187085
Jun Chen136185677368
Network Information
Related Institutions (5)
Zhejiang University
183.2K papers, 3.4M citations

97% related

Fudan University
117.9K papers, 2.6M citations

96% related

Peking University
181K papers, 4.1M citations

95% related

National University of Singapore
165.4K papers, 5.4M citations

93% related

Tsinghua University
200.5K papers, 4.5M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023415
20222,315
202120,873
202019,462
201916,699
201814,250